TY - JOUR A1 - Becker, Johanna Sabine A1 - Matusch, Andreas A1 - Becker, Julia Susanne A1 - Wu, Bei A1 - Palm, Christoph A1 - Becker, Albert Johann A1 - Salber, Dagmar T1 - Mass spectrometric imaging (MSI) of metals using advanced BrainMet techniques for biomedical research JF - International Journal of Mass Spectrometry N2 - Mass spectrometric imaging (MSI) is a young innovative analytical technique and combines different fields of advanced mass spectrometry and biomedical research with the aim to provide maps of elements and molecules, complexes or fragments. Especially essential metals such as zinc, copper, iron and manganese play a functional role in signaling, metabolism and homeostasis of the cell. Due to the high degree of spatial organization of metals in biological systems their distribution analysis is of key interest in life sciences. We have developed analytical techniques termed BrainMet using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging to measure the distribution of trace metals in biological tissues for biomedical research and feasibility studies—including bioaccumulation and bioavailability studies, ecological risk assessment and toxicity studies in humans and other organisms. The analytical BrainMet techniques provide quantitative images of metal distributions in brain tissue slices which can be combined with other imaging modalities such as photomicrography of native or processed tissue (histochemistry, immunostaining) and autoradiography or with in vivo techniques such as positron emission tomography or magnetic resonance tomography. Prospective and instrumental developments will be discussed concerning the development of the metalloprotein microscopy using a laser microdissection (LMD) apparatus for specific sample introduction into an inductively coupled plasma mass spectrometer (LMD-ICP-MS) or an application of the near field effect in LA-ICP-MS (NF-LA-ICP-MS). These nano-scale mass spectrometric techniques provide improved spatial resolution down to the single cell level. KW - Bioimaging KW - Brain tissue KW - Laser ablation inductively coupled plasma mass spectrometry KW - Laser microdissection inductively coupled plasma mass spectrometry KW - Metals KW - Metallomics KW - Nano-LA-ICP-MS KW - Tumour KW - Massenspektrometrie KW - Bildgebendes Verfahren KW - Metalle KW - Metallproteide KW - Gehirn Y1 - 2011 U6 - https://doi.org/10.1016/j.ijms.2011.01.015 VL - 307 IS - 1-3 SP - 3 EP - 15 PB - eLSEVIER CY - Elsevier ER - TY - JOUR A1 - Becker, Johanna Sabine A1 - Zoriy, Miroslav A1 - Matusch, Andreas A1 - Wu, Bei A1 - Salber, Dagmar A1 - Palm, Christoph A1 - Becker, Julia Susanne T1 - Bioimaging of Metals by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) JF - Mass Spectrometry Reviews N2 - The distribution analysis of (essential, beneficial, or toxic) metals (e.g., Cu, Fe, Zn, Pb, and others), metalloids, and non‐metals in biological tissues is of key interest in life science. Over the past few years, the development and application of several imaging mass spectrometric techniques has been rapidly growing in biology and medicine. Especially, in brain research metalloproteins are in the focus of targeted therapy approaches of neurodegenerative diseases such as Alzheimer's and Parkinson's disease, or stroke, or tumor growth. Laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) using double‐focusing sector field (LA‐ICP‐SFMS) or quadrupole‐based mass spectrometers (LA‐ICP‐QMS) has been successfully applied as a powerful imaging (mapping) technique to produce quantitative images of detailed regionally specific element distributions in thin tissue sections of human or rodent brain. Imaging LA‐ICP‐QMS was also applied to investigate metal distributions in plant and animal sections to study, for example, the uptake and transport of nutrient and toxic elements or environmental contamination. The combination of imaging LA‐ICP‐MS of metals with proteomic studies using biomolecular mass spectrometry identifies metal‐containing proteins and also phosphoproteins. Metal‐containing proteins were imaged in a two‐dimensional gel after electrophoretic separation of proteins (SDS or Blue Native PAGE). Recent progress in LA‐ICP‐MS imaging as a stand‐alone technique and in combination with MALDI/ESI‐MS for selected life science applications is summarized. KW - Bildgebendes Verfahren KW - ICP-Massenspektrometrie KW - Metalle KW - Metallproteide KW - Elektrophorese KW - Gehirnkarte KW - Bioimaging of metals KW - Laser ablation inductively coupled plasma mass spectrometry KW - metal distribution KW - metallomics KW - neurodegenerative diseases Y1 - 2010 U6 - https://doi.org/10.1002/mas.20239 VL - 29 SP - 156 EP - 175 ER -