TY - JOUR A1 - Galan, Isabel A1 - Baldermann, Andre A1 - Kusterle, Wolfgang A1 - Dietzel, Martin A1 - Mittermayr, Florian T1 - Durability of shotcrete for underground support BT - Review and update JF - Construction and building materials N2 - Shotcrete is often used for the construction and stabilization of tunnels and other underground structures, where it is susceptible to different forms of physical and chemical attacks affecting its durability. An advanced understanding of the factors that limit the durability of shotcrete is crucial to develop tailored strategies for enhancing its service life. The main focus of this contribution is to shed light on the durability of shotcrete by revising the literature, highlighting what is missing and needs to be addressed, assessing how the knowledge about concrete durability can be transferred to shotcrete, and providing recommendations for durable shotcrete structures. (C) 2018 Elsevier Ltd. All rights reserved. KW - CEMENT-BASED MATERIALS KW - CHEMOMECHANICAL COUPLING BEHAVIOR KW - Corrosion KW - Durability KW - FREEZE-THAW RESISTANCE KW - INDUCED CONCRETE CORROSION KW - Leaching KW - LEACHING BEHAVIOR KW - POLYPROPYLENE FIBERS KW - PORTLAND-CEMENT KW - POTENTIAL ALKALI-REACTIVITY KW - Shotcrete KW - Sintering KW - Sprayed concrete KW - Sulfate attack KW - THAUMASITE SULFATE ATTACK KW - Tunnel KW - Underground Y1 - 2019 U6 - https://doi.org/10.1016/j.conbuildmat.2018.12.151 VL - 202 IS - March SP - 465 EP - 493 PB - Elsevier ER - TY - JOUR A1 - Steindl, Florian Roman A1 - Sakoparnig, Marlene A1 - Briendl, Lukas G. A1 - Thumann, Maria A1 - Galan, Isabel A1 - Juhart, Joachim A1 - Röck, Rudolf A1 - Saxer, Andreas A1 - Mittermayr, Florian A1 - Kusterle, Wolfgang T1 - ASSpC – Vier Jahre Forschung für dauerhaften Spritzbeton JF - Bautechnik Y1 - 2020 PB - Wilhelm Ernst & Sohn CY - Berlin ER - TY - CHAP A1 - Steindl, F. A1 - Mittermayr, Florian A1 - Thumann, Maria A1 - Juhart, Joachim A1 - Galan Garcia, Isabel A1 - Baldermann, Andre A1 - Briendl, Lukas G. A1 - Sakoparnig, Marlene A1 - Röck, Rudolf A1 - Kusterle, Wolfgang T1 - Sulfate resistance of dry mix shotcretes with new binder composition T2 - ICCC 2019: 15th International Congress on the Chemistry of Cement, 16.-20.09.2019, Prague, Czech Republik N2 - Improved understanding of the mechanisms underlying deleterious chemical attacks is necessary to better predict the long-term performance and durability of shotcrete in aggressive environments. In the scope of the research project “ASSpC - Advanced and Sustainable Sprayed Concrete”, new durable and sustainable shotcretes and new test methods are developed. In order to increase shotcrete durability, the spray cement (specified in Austrian Guideline “Sprayed concrete”) used is substituted with supplementary cementitious materials (SCMs). However, in the past SCMs have seen only limited use in the application of dry-mix shotcrete. This contribution presents 6 new mix designs intended to be used for dry-mix shotcrete, each with varying amounts and types of SCMs, and compares their performance and sprayability with a commercially available spray cement. As sulfate attack is one of the major threats to shotcrete (e.g. in tunnelling), the resistance of the new mixes against sulfate attack is tested using a modified version of the Swiss sulfate test according to SIA 262/1:2013. This approach provides new insights into damaging mechanisms of dry mix shotcrete in sulfate-loaded environments Y1 - 2019 SP - 3527 EP - 3872 ER - TY - JOUR A1 - Sakoparnig, Marlene A1 - Galan, Isabel A1 - Steindl, Florian Roman A1 - Kusterle, Wolfgang A1 - Juhart, Joachim A1 - Grengg, Cyrill A1 - Briendl, Lukas G. A1 - Saxer, Andreas A1 - Thumann, Maria A1 - Mittermayr, Florian T1 - Durability of clinker reduced shotcrete: Ca2+ leaching, sintering, carbonation and chloride penetration JF - Materials and structures N2 - The reduction of clinker use is mandatory to lower the negative environmental impact of concrete. In shotcrete mixes, similarly to the case of conventional concrete, the use of supplementary cementitious materials (SCMs) and proper mix design allow for the substitution of clinker without compromising the mechanical properties. However, the impact of the substitution on the durability of shotcrete needs to be further assessed and understood. The results from the present study, obtained from real-scale sprayed concrete applications, show a reduction of the Ca2+ leaching and sintering potential of clinker-reduced shotcrete mixes due to the presence of SCMs. This positive effect, crucial for low maintenance costs of tunnels, is mainly related to a reduced portlandite content, which on the other hand negatively affects the carbonation resistance of shotcrete. Additionally, the hydration of SCMs positively influences the chloride penetration resistance presumably due to a combination of microstructural changes and changes in the chloride binding capacity. Differences found in the pore size distribution of the various mixes have low impact on the determined durability parameters, in particular compared to the effect of inhomogeneities produced during shotcrete application. KW - Carbonate precipitation KW - Carbonation KW - Chloride penetration KW - Durability KW - Leaching KW - Shotcrete Y1 - 2021 U6 - https://doi.org/10.1617/s11527-021-01644-7 VL - 54 SP - 1 EP - 23 PB - Springer Nature ER - TY - JOUR A1 - Steindl, Florian Roman A1 - Galan, Isabel A1 - Baldermann, Andre A1 - Sakoparnig, Marlene A1 - Briendl, Lukas G. A1 - Juhart, Joachim A1 - Thumann, Maria A1 - Dietzel, Martin A1 - Röck, Rudolf A1 - Kusterle, Wolfgang A1 - Mittermayr, Florian T1 - Sulfate durability and leaching behaviour of dry- and wet-mix shotcrete mixes JF - Cement and Concrete Research N2 - Shotcrete is a material frequently used in underground constructions such as tunnels, where Ca leaching and sulfate attack are important durability issues. In this study, two test methods were employed to investigate the sulfate resistance and leaching behaviour of dry- and wet-mix shotcretes in sulfate solutions on a time-resolved basis. Tests on powdered samples showed the dissolution of AFm, portlandite and C-A-S-H, subsequently followed by the precipitation of calcite and ettringite. The extent of sulfate expansion of drill cores corresponded to the chemical response of the powder materials, particularly on the reactivity of Ca- and Al-containing hydrated cement phases. The use of high-purity metakaolin (7-10 wt%) in the shotcrete binder significantly decreased the sulfate durability, while high amounts of other SCMs such as blast-furnace slag and silica fume (> 20 wt%) had a positive effect on the durability of shotcrete. KW - ADMIXTURES KW - ALKALI-FREE KW - ATTACK KW - BLAST-FURNACE SLAG KW - concrete KW - Durability KW - Leaching KW - MECHANISM KW - METAKAOLIN KW - RESISTANCE KW - SCMs KW - Shotcrete KW - Sulfate attack KW - TEMPERATURE KW - THAUMASITE FORM Y1 - 2020 U6 - https://doi.org/10.1016/j.cemconres.2020.106180 VL - 137 IS - November SP - 1 EP - 19 PB - Elsevier ER - TY - JOUR A1 - Galan, Isabel A1 - Briendl, Lukas G. A1 - Thumann, Maria A1 - Steindl, Florian A1 - Roeck, Rudolf A1 - Kusterle, Wolfgang A1 - Mittermayr, Florian T1 - Filler Effect in Shotcrete JF - Materials N2 - The effects of fine limestone powder on the early hydration of cementitious systems accelerated by means of alkali-free aluminum sulfate based products, commonly used for shotcrete applications, were investigated in the course of laboratory and real scale tests. In binary (CEM I + limestone) and ternary (CEM I + limestone + slag) systems the addition of fine limestone led to an enhancement of the hydration degree and strength development at early times (<24 h). The formation of ettringite, aluminate hydrates, and C-S-H is affected by the joint action of the setting accelerator and the fine limestone. Accelerator and limestone, in combination with the cement, can be optimized to enhance ettringite and silicate reaction, in some cases coupled with aluminate reaction inhibition, to produce mixes suitable for sprayed concrete applications. Such optimization can help to reduce the cement content in the mixes without compromising the early strength development of the shotcrete. KW - acceleration KW - ACCELERATORS KW - ALKALI-FREE KW - ALUMINUM SULFATE KW - CaCO3 KW - CALCIUM-CARBONATE KW - CEMENT HYDRATION KW - EARLY AGE HYDRATION KW - hydration KW - LIMESTONE POWDER KW - mechanical properties KW - PORTLAND-CEMENT Y1 - 2019 U6 - https://doi.org/10.3390/ma12193221 VL - 12 IS - 19 SP - 1 EP - 24 PB - MDPI CY - Basel ER - TY - CHAP A1 - Mittermayr, Florian A1 - Galan, Isabel A1 - Saade, Marcella Ruschi Mendes A1 - Saxer, Andreas A1 - Kusterle, Wolfgang T1 - "ASSpC" Shotcrete research for the needs of tomorrow T2 - ICCC 2019: 15th International Congress on the Chemistry of Cement, ICCC 2019, 16.-20.09.2019, Prague, Czech Republik N2 - Shotcrete or sprayed concrete in tunneling in connection with the "New Austrian Tunneling Method” has been developed over the last decades to reach a high quality standard. However, at present the development of new shotcrete mixes is required to fulfill durability and stainability requirements, i.e. for superior performance in aggressive environments and reduction of maintenance costs. In the course of the project ASSpC ("Advanced and sustainable sprayed concrete") the research team focuses on producing and testing new and innovative shotcrete mixes using local and environmentally friendly raw materials. Sustainable and durable shotcrete with optimized mechanical and physical properties and improved chemical resistance is developed. This paper outlines the motivation for the project, gives an overview of the project structure and introduces key reaction mechanisms and environmental controls causing damage of shotcrete in tunnels. Y1 - 2019 UR - https://iccc-online.org/fileadmin/gruppen/iccc/proceedings/ICCC15_2019.pdf SP - 3518 EP - 3872 ER - TY - CHAP A1 - Sakoparnig, Marlene A1 - Galan, Isabel A1 - Balderman, Andre A1 - Steindl, Florian A1 - Dietzel, Martin A1 - Thumann, Maria A1 - Saxer, Andreas A1 - Kusterle, Wolfgang A1 - Mittermayr, Florian T1 - Experimental Ca leaching of shotcrete & secondary precipitation T2 - ICCC 2019: 15th International Congress on the Chemistry of Cement, ICCC 2019, 16.-20.09.2019, Prague, Czech Republik Y1 - 2019 UR - https://iccc-online.org/fileadmin/gruppen/iccc/proceedings/ICCC15_2019.pdf SP - 3488 EP - 3495 ER - TY - CHAP A1 - Briendl, Lukas G. A1 - Galan, Isabel A1 - Steindl, Florian A1 - Röck, Rudolf A1 - Thumann, Maria A1 - Juhart, Joachim A1 - Baldermann, Andre A1 - Mittermayr, Florian A1 - Kusterle, Wolfgang T1 - Hydration processes of accelerated cementitious systems governing early strength development T2 - ICCC 2019: 15th International Congress on Chemistry of Cement, 16.-20.09.2019, Prague, Czech Republik Y1 - 2019 SP - 714 EP - 724 ER - TY - CHAP A1 - Juhart, Joachim A1 - Briendl, Lukas G. A1 - Röck, Rudolf A1 - Galan, Isabel A1 - Thumann, Maria A1 - Mittermayr, Florian A1 - Kusterle, Wolfgang T1 - Performance optimization of shotcrete by combined fillers T2 - ICCC 2019: 15th International Congress on the Chemistry of Cement, ICCC 2019, 16.-20.09.2019, Prague, Czech Republik Y1 - 2019 SP - 1387 EP - 3872 ER -