TY - GEN A1 - Rückert, Tobias A1 - Rieder, Maximilian A1 - Rauber, David A1 - Xiao, Michel A1 - Humolli, Eg A1 - Feussner, Hubertus A1 - Wilhelm, Dirk A1 - Palm, Christoph T1 - Augmenting instrument segmentation in video sequences of minimally invasive surgery by synthetic smoky frames T2 - International Journal of Computer Assisted Radiology and Surgery KW - Surgical instrument segmentation KW - smoke simulation KW - unpaired image-to-image translation KW - robot-assisted surgery Y1 - 2023 U6 - https://doi.org/10.1007/s11548-023-02878-2 VL - 18 IS - Suppl 1 SP - S54 EP - S56 PB - Springer Nature ER - TY - JOUR A1 - Hartwig, Regine A1 - Berlet, Maximilian A1 - Czempiel, Tobias A1 - Fuchtmann, Jonas A1 - Rückert, Tobias A1 - Feussner, Hubertus A1 - Wilhelm, Dirk T1 - Bildbasierte Unterstützungsmethoden für die zukünftige Anwendung in der Chirurgie JF - Die Chirurgie N2 - Hintergrund: Die Entwicklung assistiver Technologien wird in den kommenden Jahren nicht nur in der Chirurgie von zunehmender Bedeutung sein. Die Wahrnehmung der Istsituation stellt hierbei die Grundlage jeder autonomen Handlung dar. Hierfür können unterschiedliche Sensorsysteme genutzt werden, wobei videobasierte Systeme ein besonderes Potenzial aufweisen. Methode: Anhand von Literaturangaben und auf Basis eigener Forschungsarbeiten werden zentrale Aspekte bildbasierter Unterstützungssysteme für die Chirurgie dargestellt. Hierbei wird deren Potenzial, aber auch die Limitationen der Methoden erläutert. Ergebnisse: Eine etablierte Anwendung stellt die Phasendetektion chirurgischer Eingriffe dar, für die Operationsvideos mittels neuronaler Netzwerke analysiert werden. Durch eine zeitlich gestützte und transformative Analyse konnten die Ergebnisse der Prädiktion jüngst deutlich verbessert werden. Aber auch robotische Kameraführungssysteme nutzen Bilddaten, um das Laparoskop zukünftig autonom zu navigieren. Um die Zuverlässigkeit an die hohen Anforderungen in der Chirurgie anzugleichen, müssen diese jedoch durch zusätzliche Informationen ergänzt werden. Ein vergleichbarer multimodaler Ansatz wurde bereits für die Navigation und Lokalisation bei laparoskopischen Eingriffen umgesetzt. Hierzu werden Videodaten mittels verschiedener Methoden analysiert und diese Ergebnisse mit anderen Sensormodalitäten fusioniert. Diskussion: Bildbasierte Unterstützungsmethoden sind bereits für diverse Aufgaben verfügbar und stellen einen wichtigen Aspekt für die Chirurgie der Zukunft dar. Um hier jedoch zuverlässig und für autonome Funktionen eingesetzt werden zu können, müssen sie zukünftig in multimodale Ansätze eingebettet werden, um die erforderliche Sicherheit bieten zu können. T2 - Image-based supportive measures for future application in surgery KW - Künstliche Intelligenz KW - Robotik KW - Kognitiver Operationsaal KW - Autonomie KW - Digitalisierung Y1 - 2022 U6 - https://doi.org/10.1007/s00104-022-01668-x VL - 93 SP - 956 EP - 965 PB - Springer ER - TY - CHAP A1 - Rückert, Tobias A1 - Rieder, Maximilian A1 - Feussner, Hubertus A1 - Wilhelm, Dirk A1 - Rückert, Daniel A1 - Palm, Christoph ED - Maier, Andreas ED - Deserno, Thomas M. ED - Handels, Heinz ED - Maier-Hein, Klaus H. ED - Palm, Christoph ED - Tolxdorff, Thomas T1 - Smoke Classification in Laparoscopic Cholecystectomy Videos Incorporating Spatio-temporal Information T2 - Bildverarbeitung für die Medizin 2024: Proceedings, German Workshop on Medical Image Computing, March 10-12, 2024, Erlangen N2 - Heavy smoke development represents an important challenge for operating physicians during laparoscopic procedures and can potentially affect the success of an intervention due to reduced visibility and orientation. Reliable and accurate recognition of smoke is therefore a prerequisite for the use of downstream systems such as automated smoke evacuation systems. Current approaches distinguish between non-smoked and smoked frames but often ignore the temporal context inherent in endoscopic video data. In this work, we therefore present a method that utilizes the pixel-wise displacement from randomly sampled images to the preceding frames determined using the optical flow algorithm by providing the transformed magnitude of the displacement as an additional input to the network. Further, we incorporate the temporal context at evaluation time by applying an exponential moving average on the estimated class probabilities of the model output to obtain more stable and robust results over time. We evaluate our method on two convolutional-based and one state-of-the-art transformer architecture and show improvements in the classification results over a baseline approach, regardless of the network used. Y1 - 2024 U6 - https://doi.org/10.1007/978-3-658-44037-4_78 SP - 298 EP - 303 PB - Springeer CY - Wiesbaden ER - TY - INPR A1 - Rückert, Tobias A1 - Rauber, David A1 - Maerkl, Raphaela A1 - Klausmann, Leonard A1 - Yildiran, Suemeyye R. A1 - Gutbrod, Max A1 - Nunes, Danilo Weber A1 - Moreno, Alvaro Fernandez A1 - Luengo, Imanol A1 - Stoyanov, Danail A1 - Toussaint, Nicolas A1 - Cho, Enki A1 - Kim, Hyeon Bae A1 - Choo, Oh Sung A1 - Kim, Ka Young A1 - Kim, Seong Tae A1 - Arantes, Gonçalo A1 - Song, Kehan A1 - Zhu, Jianjun A1 - Xiong, Junchen A1 - Lin, Tingyi A1 - Kikuchi, Shunsuke A1 - Matsuzaki, Hiroki A1 - Kouno, Atsushi A1 - Manesco, João Renato Ribeiro A1 - Papa, João Paulo A1 - Choi, Tae-Min A1 - Jeong, Tae Kyeong A1 - Park, Juyoun A1 - Alabi, Oluwatosin A1 - Wei, Meng A1 - Vercauteren, Tom A1 - Wu, Runzhi A1 - Xu, Mengya A1 - an Wang, A1 - Bai, Long A1 - Ren, Hongliang A1 - Yamlahi, Amine A1 - Hennighausen, Jakob A1 - Maier-Hein, Lena A1 - Kondo, Satoshi A1 - Kasai, Satoshi A1 - Hirasawa, Kousuke A1 - Yang, Shu A1 - Wang, Yihui A1 - Chen, Hao A1 - Rodríguez, Santiago A1 - Aparicio, Nicolás A1 - Manrique, Leonardo A1 - Lyons, Juan Camilo A1 - Hosie, Olivia A1 - Ayobi, Nicolás A1 - Arbeláez, Pablo A1 - Li, Yiping A1 - Khalil, Yasmina Al A1 - Nasirihaghighi, Sahar A1 - Speidel, Stefanie A1 - Rückert, Daniel A1 - Feussner, Hubertus A1 - Wilhelm, Dirk A1 - Palm, Christoph T1 - Comparative validation of surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation in endoscopy: Results of the PhaKIR 2024 challenge N2 - Reliable recognition and localization of surgical instruments in endoscopic video recordings are foundational for a wide range of applications in computer- and robot-assisted minimally invasive surgery (RAMIS), including surgical training, skill assessment, and autonomous assistance. However, robust performance under real-world conditions remains a significant challenge. Incorporating surgical context - such as the current procedural phase - has emerged as a promising strategy to improve robustness and interpretability. To address these challenges, we organized the Surgical Procedure Phase, Keypoint, and Instrument Recognition (PhaKIR) sub-challenge as part of the Endoscopic Vision (EndoVis) challenge at MICCAI 2024. We introduced a novel, multi-center dataset comprising thirteen full-length laparoscopic cholecystectomy videos collected from three distinct medical institutions, with unified annotations for three interrelated tasks: surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation. Unlike existing datasets, ours enables joint investigation of instrument localization and procedural context within the same data while supporting the integration of temporal information across entire procedures. We report results and findings in accordance with the BIAS guidelines for biomedical image analysis challenges. The PhaKIR sub-challenge advances the field by providing a unique benchmark for developing temporally aware, context-driven methods in RAMIS and offers a high-quality resource to support future research in surgical scene understanding. Y1 - 2025 N1 - Der Aufsatz wurde peer-reviewed veröffentlicht und ist ebenfalls in diesem Repositorium verzeichnet unter: https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/start/0/rows/10/sortfield/score/sortorder/desc/searchtype/simple/query/10.1016%2Fj.media.2026.103945/docId/8846 ER - TY - JOUR A1 - Rueckert, Tobias A1 - Rauber, David A1 - Maerkl, Raphaela A1 - Klausmann, Leonard A1 - Yildiran, Suemeyye R. A1 - Gutbrod, Max A1 - Nunes, Danilo Weber A1 - Moreno, Alvaro Fernandez A1 - Luengo, Imanol A1 - Stoyanov, Danail A1 - Toussaint, Nicolas A1 - Cho, Enki A1 - Kim, Hyeon Bae A1 - Choo, Oh Sung A1 - Kim, Ka Young A1 - Kim, Seong Tae A1 - Arantes, Gonçalo A1 - Song, Kehan A1 - Zhu, Jianjun A1 - Xiong, Junchen A1 - Lin, Tingyi A1 - Kikuchi, Shunsuke A1 - Matsuzaki, Hiroki A1 - Kouno, Atsushi A1 - Manesco, João Renato Ribeiro A1 - Papa, João Paulo A1 - Choi, Tae-Min A1 - Jeong, Tae Kyeong A1 - Park, Juyoun A1 - Alabi, Oluwatosin A1 - Wei, Meng A1 - Vercauteren, Tom A1 - Wu, Runzhi A1 - Xu, Mengya A1 - Wang, An A1 - Bai, Long A1 - Ren, Hongliang A1 - Yamlahi, Amine A1 - Hennighausen, Jakob A1 - Maier-Hein, Lena A1 - Kondo, Satoshi A1 - Kasai, Satoshi A1 - Hirasawa, Kousuke A1 - Yang, Shu A1 - Wang, Yihui A1 - Chen, Hao A1 - Rodríguez, Santiago A1 - Aparicio, Nicolás A1 - Manrique, Leonardo A1 - Palm, Christoph A1 - Wilhelm, Dirk A1 - Feussner, Hubertus A1 - Rueckert, Daniel A1 - Speidel, Stefanie A1 - Nasirihaghighi, Sahar A1 - Al Khalil, Yasmina A1 - Li, Yiping A1 - Arbeláez, Pablo A1 - Ayobi, Nicolás A1 - Hosie, Olivia A1 - Lyons, Juan Camilo T1 - Comparative validation of surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation in endoscopy: Results of the PhaKIR 2024 challenge JF - Medical Image Analysis N2 - Reliable recognition and localization of surgical instruments in endoscopic video recordings are foundational for a wide range of applications in computer- and robot-assisted minimally invasive surgery (RAMIS), including surgical training, skill assessment, and autonomous assistance. However, robust performance under real-world conditions remains a significant challenge. Incorporating surgical context – such as the current procedural phase – has emerged as a promising strategy to improve robustness and interpretability. To address these challenges, we organized the Surgical Procedure Phase, Keypoint, and Instrument Recognition (PhaKIR) sub-challenge as part of the Endoscopic Vision (EndoVis) challenge at MICCAI 2024. We introduced a novel, multi-center dataset comprising thirteen full-length laparoscopic cholecystectomy videos collected from three distinct medical institutions, with unified annotations for three interrelated tasks: surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation. Unlike existing datasets, ours enables joint investigation of instrument localization and procedural context within the same data while supporting the integration of temporal information across entire procedures. We report results and findings in accordance with the BIAS guidelines for biomedical image analysis challenges. The PhaKIR sub-challenge advances the field by providing a unique benchmark for developing temporally aware, context-driven methods in RAMIS and offers a high-quality resource to support future research in surgical scene understanding. KW - Surgical phase recognition KW - Instrument keypoint estimation KW - Instrument instance segmentation KW - Robot-assisted surgery Y1 - 2026 U6 - https://doi.org/10.1016/j.media.2026.103945 SN - 1361-8415 N1 - Corresponding author der OTH Regensburg: Tobias Rueckert Die Preprint-Version ist ebenfalls in diesem Repositorium verzeichnet unter: https://opus4.kobv.de/opus4-oth-regensburg/solrsearch/index/search/start/0/rows/10/sortfield/score/sortorder/desc/searchtype/simple/query/2507.16559 VL - 109 PB - Elsevier ER - TY - GEN A1 - Rueckert, Tobias A1 - Rauber, David A1 - Klausmann, Leonard A1 - Gutbrod, Max A1 - Rueckert, Daniel A1 - Feussner, Hubertus A1 - Wilhelm, Dirk A1 - Palm, Christoph T1 - PhaKIR Dataset - Surgical Procedure Phase, Keypoint, and Instrument Recognition [Data set] N2 - Note: A script for extracting the individual frames from the video files while preserving the challenge-compliant directory structure and frame-to-mask naming conventions is available on GitHub and can be accessed here: https://github.com/remic-othr/PhaKIR_Dataset. The dataset is described in the following publications: Rueckert, Tobias et al.: Comparative validation of surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation in endoscopy: Results of the PhaKIR 2024 challenge. arXiv preprint, https://arxiv.org/abs/2507.16559. 2025. Rueckert, Tobias et al.: Video Dataset for Surgical Phase, Keypoint, and Instrument Recognition in Laparoscopic Surgery (PhaKIR). arXiv preprint, https://arxiv.org/abs/2511.06549. 2025. The proposed dataset was used as the training dataset in the PhaKIR challenge (https://phakir.re-mic.de/) as part of EndoVis-2024 at MICCAI 2024 and consists of eight real-world videos of human cholecystectomies ranging from 23 to 60 minutes in duration. The procedures were performed by experienced physicians, and the videos were recorded in three hospitals. In addition to existing datasets, our annotations provide pixel-wise instance segmentation masks of surgical instruments for a total of 19 categories, coordinates of relevant instrument keypoints (instrument tip(s), shaft-tip transition, shaft), both at an interval of one frame per second, and specifications regarding the intervention phases for a total of eight different phase categories for each individual frame in one dataset and thus comprehensively cover instrument localization and the context of the operation. Furthermore, the provision of the complete video sequences offers the opportunity to include the temporal information regarding the respective tasks and thus further optimize the resulting methods and outcomes. Y1 - 2025 U6 - https://doi.org/10.5281/zenodo.15740620 ER -