TY - JOUR A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Muzalyova, Anna A1 - Rauber, David A1 - Probst, Andreas A1 - Nagl, Sandra A1 - Römmele, Christoph A1 - Yip, Hon Chi A1 - Lau, Louis Ho Shing A1 - Gölder, Stefan Karl A1 - Schmidt, Arthur A1 - Kouladouros, Konstantinos A1 - Abdelhafez, Mohamed A1 - Walter, Benjamin M. A1 - Meinikheim, Michael A1 - Chiu, Philip Wai Yan A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Artificial intelligence improves submucosal vessel detection during third space endoscopy JF - Endoscopy N2 - Background and study aims: While artificial intelligence (AI) shows high potential in decision support for diagnostic gastrointestinal endoscopy, its role in therapeutic endoscopy remains unclear. Third space endoscopic procedures pose the risk of intraprocedural bleeding. Therefore, we aimed to develop an AI algorithm for intraprocedural blood vessel detection. Patients and Methods: Using a test dataset with 101 standardized video clips containing 200 predefined submucosal blood vessels, 19 endoscopists were evaluated for the vessel detection rate (VDR) and time (VDT) with and without support of an AI algorithm. Test subjects were grouped according to experience in ESD. Results: With AI support, endoscopists VDR increased from 56.4% [CI 54.1–58.6] to 72.4% [CI 70.3–74.4]. Endoscopists‘ VDT dropped from 6.7sec [CI 6.2-7.1] to 5.2sec [CI 4.8-5.7]. False positive (FP) readings appeared in 4.5% of frames and were marked significantly shorter than true positives (6.0sec [CI 5.28-6.70] vs. 0.7sec [CI 0.55-0.87]). Conclusions: AI improved the vessel detection rate and time of endoscopists during third space endoscopy. While these data need to be corroborated by clinical trials, AI may prove to be an invaluable tool for the improvement of endoscopic interventions. KW - Artificial Intelligence KW - Third Space Endoscopy Y1 - 2025 U6 - https://doi.org/10.1055/a-2534-1164 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Nagl, Sandra A1 - Meinikheim, Michael A1 - Yip, Hon Chi A1 - Lau, Louis Ho Shing A1 - Chiu, Philip Wai Yan A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Effekt eines Künstliche Intelligenz (KI) – Algorithmus auf die Gefäßdetektion bei third space Endoskopien T2 - Zeitschrift für Gastroenterologie N2 - Einleitung  Third space Endoskopieprozeduren wie die endoskopische Submukosadissektion (ESD) und die perorale endoskopische Myotomie (POEM) sind technisch anspruchsvoll und gehen mit untersucherabhängigen Komplikationen wie Blutungen und Perforationen einher. Grund hierfür ist die unabsichtliche Durchschneidung von submukosalen Blutgefäßen ohne präemptive Koagulation. Ziele Die Forschungsfrage, ob ein KI-Algorithmus die intraprozedurale Gefäßerkennung bei ESD und POEM unterstützen und damit Komplikationen wie Blutungen verhindern könnte, erscheint in Anbetracht des erfolgreichen Einsatzes von KI bei der Erkennung von Kolonpolypen interessant. Methoden  Auf 5470 Einzelbildern von 59 third space Endoscopievideos wurden submukosale Blutgefäße annotiert. Zusammen mit weiteren 179.681 nicht-annotierten Bildern wurde ein DeepLabv3+neuronales Netzwerk mit dem ECMT-Verfahren für semi-supervised learning trainiert, um Blutgefäße in Echtzeit erkennen zu können. Für die Evaluation wurde ein Videotest mit 101 Videoclips aus 15 vom Trainingsdatensatz separaten Prozeduren mit 200 vordefinierten Gefäßen erstellt. Die Gefäßdetektionsrate, -zeit und -dauer, definiert als der Prozentsatz an Einzelbildern eines Videos bezogen auf den Goldstandard, auf denen ein definiertes Gefäß erkannt wurde, wurden erhoben. Acht erfahrene Endoskopiker wurden mithilfe dieses Videotests im Hinblick auf Gefäßdetektion getestet, wobei eine Hälfte der Videos nativ, die andere Hälfte nach Markierung durch den KI-Algorithmus angesehen wurde. Ergebnisse  Der mittlere Dice Score des Algorithmus für Blutgefäße war 68%. Die mittlere Gefäßdetektionsrate im Videotest lag bei 94% (96% für ESD; 74% für POEM). Die mediane Gefäßdetektionszeit des Algorithmus lag bei 0,32 Sekunden (0,3 Sekunden für ESD; 0,62 Sekunden für POEM). Die mittlere Gefäßdetektionsdauer lag bei 59,1% (60,6% für ESD; 44,8% für POEM) des Goldstandards. Alle Endoskopiker hatten mit KI-Unterstützung eine höhere Gefäßdetektionsrate als ohne KI. Die mittlere Gefäßdetektionsrate ohne KI lag bei 56,4%, mit KI bei 71,2% (p<0.001). Schlussfolgerung  KI-Unterstützung war mit einer statistisch signifikant höheren Gefäßdetektionsrate vergesellschaftet. Die mediane Gefäßdetektionszeit von deutlich unter einer Sekunde sowie eine Gefäßdetektionsdauer von größer 50% des Goldstandards wurden für den klinischen Einsatz als ausreichend erachtet. In prospektiven Anwendungsstudien sollte der KI-Algorithmus auf klinische Relevanz getestet werden. KW - Künstliche Intelligenz Y1 - 2023 U6 - https://doi.org/10.1055/s-0043-1771980 VL - 61 IS - 08 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Muzalyova, Anna A1 - Rauber, David A1 - Probst, Andreas A1 - Nagl, Sandra A1 - Römmele, Christoph A1 - Yip, Hon Chi A1 - Lau, Louis Ho Shing A1 - Gölder, Stefan Karl A1 - Schmidt, Arthur A1 - Kouladouros, Konstantinos A1 - Abdelhafez, Mohamed A1 - Walter, B. A1 - Meinikheim, Michael A1 - Chiu, Philip Wai Yan A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Künstliche Intelligenz erhöht die Gefäßerkennung von Endoskopikern bei third space Endoskopie T2 - Zeitschrift für Gastroenterologie N2 - Einleitung: Künstliche Intelligenz (KI)-Algorithmen unterstützen Endoskopiker bei der Erkennung und Charakterisierung von Kolonpolypen in der klinischen Praxis und führen zu einer Erhöhung der Adenomdetektionsrate. Auch bei therapeutischen Maßnahmen wie der endoskopischen Submukosadissektion (ESD) könne relevante anatomische Strukturen durch KI mit hoher Genauigkeit erkannt und im endoskopischen Bild in Echtzeit markiert werden. Der Effekt einer solchen Applikation auf die Gefäßdetektion von Endoskopikern ist bislang nicht erforscht. Ziele:  In dieser Studie wurde der Effekt eines KI-Algorithmus zur Echtzeit-Gefäßmarkierung bei ESD auf die Gefäßdetektionsrate von Endoskopikern untersucht. Methodik:  59 third space Endoskopievideos wurde aus der Datenbank des Universitätsklinikums Augsburg extrahiert. Auf 5470 Einzelbildern dieser Untersuchungen wurde submukosale Blutgefäße annotiert. Zusammen mit weiteren 179681 unmarkierten Bildern wurde ein DeepLabV3+ neuronales Netzwerk mit einer semi-supervised learning Methode darin trainiert, submukosale Blutgefäße auf dem endoskopischen Bild zu erkennen und in Echtzeit einzuzeichnen. Anhand eines Videotests mit 101 Videoclips und 200 vordefinierten Blutgefäßen wurden 19 Endoskopiker mit und ohne KI Unterstützung getestet. Ergebnis:  Der Algorithmus erkannte in dem Videotest 93.5% der Gefäße in einer Detektionszeit von im Median 0,3 Sekunden. Die Gefäßdetektionsrate von Endoskopikern erhöhte sich durch KI Unterstützung von 56,4% auf 72,4% (p<0.001). Die Gefäßdetektionszeit reduzierte sich durch KI-Unterstützung von 6,7 auf 5.2 Sekunden (p<0.001). Der Algorithmus zeigte eine Rate an falsch positiven Detektionen in 4.5% der Einzelbilder. Falsch positiv erkannte Strukturen wurde kürzer detektiert, als richtig positive (0.7 und 6.0 Sekunden, p<0.001). Schlussfolgerung:  KI Unterstützung führte zu einer erhöhten Gefäßdetektionsrate und schnelleren Gefäßdetektionszeit von Endoskopikern. Ein möglicher klinischer Effekt auf die intraprozedurale Komplikationsrate oder Operationszeit könnte in prospektiven Studien ermittelt werden. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1790087 VL - 62 IS - 09 SP - e830 PB - Georg Thieme Verlag KG ER -