TY - CHAP A1 - Mendel, Robert A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Palm, Christoph T1 - Barrett’s Esophagus Analysis Using Convolutional Neural Networks T2 - Bildverarbeitung für die Medizin 2017; Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 12. bis 14. März 2017 in Heidelberg N2 - We propose an automatic approach for early detection of adenocarcinoma in the esophagus. High-definition endoscopic images (50 cancer, 50 Barrett) are partitioned into a dataset containing approximately equal amounts of patches showing cancerous and non-cancerous regions. A deep convolutional neural network is adapted to the data using a transfer learning approach. The final classification of an image is determined by at least one patch, for which the probability being a cancer patch exceeds a given threshold. The model was evaluated with leave one patient out cross-validation. With sensitivity and specificity of 0.94 and 0.88, respectively, our findings improve recently published results on the same image data base considerably. Furthermore, the visualization of the class probabilities of each individual patch indicates, that our approach might be extensible to the segmentation domain. KW - Speiseröhrenkrebs KW - Diagnose KW - Maschinelles Lernen KW - Bilderkennung KW - Automatische Klassifikation Y1 - 2017 U6 - https://doi.org/10.1007/978-3-662-54345-0_23 SP - 80 EP - 85 PB - Springer CY - Berlin ER - TY - JOUR A1 - Souza Jr., Luis Antonio de A1 - Passos, Leandro A. A1 - Santana, Marcos Cleison S. A1 - Mendel, Robert A1 - Rauber, David A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Papa, João Paulo A1 - Palm, Christoph T1 - Layer-selective deep representation to improve esophageal cancer classification JF - Medical & Biological Engineering & Computing N2 - Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their accountability and transparency level must be improved to transfer this success into clinical practice. The reliability of machine learning decisions must be explained and interpreted, especially for supporting the medical diagnosis.For this task, the deep learning techniques’ black-box nature must somehow be lightened up to clarify its promising results. Hence, we aim to investigate the impact of the ResNet-50 deep convolutional design for Barrett’s esophagus and adenocarcinoma classification. For such a task, and aiming at proposing a two-step learning technique, the output of each convolutional layer that composes the ResNet-50 architecture was trained and classified for further definition of layers that would provide more impact in the architecture. We showed that local information and high-dimensional features are essential to improve the classification for our task. Besides, we observed a significant improvement when the most discriminative layers expressed more impact in the training and classification of ResNet-50 for Barrett’s esophagus and adenocarcinoma classification, demonstrating that both human knowledge and computational processing may influence the correct learning of such a problem. KW - Multistep training KW - Barrett’s esophagus detection KW - Convolutional neural networks KW - Deep learning Y1 - 2024 U6 - https://doi.org/10.1007/s11517-024-03142-8 VL - 62 SP - 3355 EP - 3372 PB - Springer Nature CY - Heidelberg ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Probst, Andreas A1 - Meinikheim, Michael A1 - Byrne, Michael F. A1 - Messmann, Helmut A1 - Palm, Christoph T1 - Multimodal imaging for detection and segmentation of Barrett’s esophagus-related neoplasia using artificial intelligence JF - Endoscopy N2 - The early diagnosis of cancer in Barrett’s esophagus is crucial for improving the prognosis. However, identifying Barrett’s esophagus-related neoplasia (BERN) is challenging, even for experts [1]. Four-quadrant biopsies may improve the detection of neoplasia, but they can be associated with sampling errors. The application of artificial intelligence (AI) to the assessment of Barrett’s esophagus could improve the diagnosis of BERN, and this has been demonstrated in both preclinical and clinical studies [2] [3]. In this video demonstration, we show the accurate detection and delineation of BERN in two patients ([Video 1]). In part 1, the AI system detects a mucosal cancer about 20 mm in size and accurately delineates the lesion in both white-light and narrow-band imaging. In part 2, a small island of BERN with high-grade dysplasia is detected and delineated in white-light, narrow-band, and texture and color enhancement imaging. The video shows the results using a transparent overlay of the mucosal cancer in real time as well as a full segmentation preview. Additionally, the optical flow allows for the assessment of endoscope movement, something which is inversely related to the reliability of the AI prediction. We demonstrate that multimodal imaging can be applied to the AI-assisted detection and segmentation of even small focal lesions in real time. KW - Video KW - Artificial Intelligence KW - Multimodal Imaging Y1 - 2022 U6 - https://doi.org/10.1055/a-1704-7885 VL - 54 IS - 10 PB - Georg Thieme Verlag CY - Stuttgart ET - E-Video ER - TY - GEN A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Probst, Andreas A1 - Scheppach, Markus W. A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Ebigbo, Alanna T1 - Optical Flow als Methode zur Qualitätssicherung KI-unterstützter Untersuchungen von Barrett-Ösophagus und Barrett-Ösophagus assoziierten Neoplasien T2 - Zeitschrift für Gastroenterologie N2 - Einleitung  Übermäßige Bewegung im Bild kann die Performance von auf künstlicher Intelligenz (KI) basierenden klinischen Entscheidungsunterstützungssystemen (CDSS) reduzieren. Optical Flow (OF) ist eine Methode zur Lokalisierung und Quantifizierung von Bewegungen zwischen aufeinanderfolgenden Bildern. Ziel  Ziel ist es, die Mensch-Computer-Interaktion (HCI) zu verbessern und Endoskopiker die unser KI-System „Barrett-Ampel“ zur Unterstützung bei der Beurteilung von Barrett-Ösophagus (BE) verwenden, ein Echtzeit-Feedback zur aktuellen Datenqualität anzubieten. Methodik  Dazu wurden unveränderte Videos in „Weißlicht“ (WL), „Narrow Band Imaging“ (NBI) und „Texture and Color Enhancement Imaging“ (TXI) von acht endoskopischen Untersuchungen von histologisch gesichertem BE und mit Barrett-Ösophagus assoziierten Neoplasien (BERN) durch unseren KI-Algorithmus analysiert. Der zur Bewertung der Bildqualität verwendete OF beinhaltete die mittlere Magnitude und die Entropie des Histogramms der Winkel. Frames wurden automatisch extrahiert, wenn die vordefinierten Schwellenwerte von 3,0 für die mittlere Magnitude und 9,0 für die Entropie des Histogramms der Winkel überschritten wurden. Experten sahen sich zunächst die Videos ohne KI-Unterstützung an und bewerteten, ob Störfaktoren die Sicherheit mit der eine Diagnose im vorliegenden Fall gestellt werden kann negativ beeinflussen. Anschließend überprüften sie die extrahierten Frames. Ergebnis  Gleichmäßige Bewegung in eine Richtung, wie etwa beim Vorschieben des Endoskops, spiegelte sich, bei insignifikant veränderter Entropie, in einer Erhöhung der Magnitude wider. Chaotische Bewegung, zum Beispiel während dem Spülen, war mit erhöhter Entropie assoziiert. Insgesamt war eine unruhige endoskopische Darstellung, Flüssigkeit sowie übermäßige Ösophagusmotilität mit erhöhtem OF assoziiert und korrelierte mit der Meinung der Experten über die Qualität der Videos. Der OF und die subjektive Wahrnehmung der Experten über die Verwertbarkeit der vorliegenden Bildsequenzen korrelierten direkt proportional. Wenn die vordefinierten Schwellenwerte des OF überschritten wurden, war die damit verbundene Bildqualität in 94% der Fälle für eine definitive Interpretation auch für Experten unzureichend. Schlussfolgerung  OF hat das Potenzial Endoskopiker ein Echtzeit-Feedback über die Qualität des Dateninputs zu bieten und so nicht nur die HCI zu verbessern, sondern auch die optimale Performance von KI-Algorithmen zu ermöglichen. KW - Optical Flow Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1754997 VL - 60 IS - 08 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - GEN A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Scheppach, Markus W. A1 - Probst, Andreas A1 - Prinz, Friederike A1 - Schwamberger, Tanja A1 - Schlottmann, Jakob A1 - Gölder, Stefan Karl A1 - Walter, Benjamin A1 - Steinbrück, Ingo A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Einsatz von künstlicher Intelligenz (KI) als Entscheidungsunterstützungssystem für nicht-Experten bei der Beurteilung von Barrett-Ösophagus assoziierten Neoplasien (BERN) T2 - Zeitschrift für Gastroenterologie N2 - Einleitung Die sichere Detektion und Charakterisierung von Barrett-Ösophagus assoziierten Neoplasien (BERN) stellt selbst für erfahrene Endoskopiker eine Herausforderung dar. Ziel Ziel dieser Studie ist es, den Add-on Effekt eines künstlichen Intelligenz (KI) Systems (Barrett-Ampel) als Entscheidungsunterstüzungssystem für Endoskopiker ohne Expertise bei der Untersuchung von BERN zu evaluieren. Material und Methodik Zwölf Videos in „Weißlicht“ (WL), „narrow-band imaging“ (NBI) und „texture and color enhanced imaging“ (TXI) von histologisch bestätigten Barrett-Metaplasien oder BERN wurden von Experten und Untersuchern ohne Barrett-Expertise evaluiert. Die Probanden wurden dazu aufgefordert in den Videos auftauchende BERN zu identifizieren und gegebenenfalls die optimale Biopsiestelle zu markieren. Unser KI-System wurde demselben Test unterzogen, wobei dieses BERN in Echtzeit segmentierte und farblich von umliegendem Epithel differenzierte. Anschließend wurden den Probanden die Videos mit zusätzlicher KI-Unterstützung gezeigt. Basierend auf dieser neuen Information, wurden die Probanden zu einer Reevaluation ihrer initialen Beurteilung aufgefordert. Ergebnisse Die „Barrett-Ampel“ identifizierte unabhängig von den verwendeten Darstellungsmodi (WL, NBI, TXI) alle BERN. Zwei entzündlich veränderte Läsionen wurden fehlinterpretiert (Genauigkeit=75%). Während Experten vergleichbare Ergebnisse erzielten (Genauigkeit=70,8%), hatten Endoskopiker ohne Expertise bei der Beurteilung von Barrett-Metaplasien eine Genauigkeit von lediglich 58,3%. Wurden die nicht-Experten allerdings von unserem KI-System unterstützt, erreichten diese eine Genauigkeit von 75%. Zusammenfassung Unser KI-System hat das Potential als Entscheidungsunterstützungssystem bei der Differenzierung zwischen Barrett-Metaplasie und BERN zu fungieren und so Endoskopiker ohne entsprechende Expertise zu assistieren. Eine Limitation dieser Studie ist die niedrige Anzahl an eingeschlossenen Videos. Um die Ergebnisse dieser Studie zu bestätigen, müssen randomisierte kontrollierte klinische Studien durchgeführt werden. KW - Barrett-Ösophagus KW - Künstliche Intelligenz Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1745653 VL - 60 IS - 4 SP - 251 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Scheppach, Markus W. A1 - Probst, Andreas A1 - Prinz, Friederike A1 - Schwamberger, Tanja A1 - Schlottmann, Jakob A1 - Gölder, Stefan Karl A1 - Walter, Benjamin A1 - Steinbrück, Ingo A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - INFLUENCE OF AN ARTIFICIAL INTELLIGENCE (AI) BASED DECISION SUPPORT SYSTEM (DSS) ON THE DIAGNOSTIC PERFORMANCE OF NON-EXPERTS IN BARRETT´S ESOPHAGUS RELATED NEOPLASIA (BERN) T2 - Endoscopy N2 - Aims Barrett´s esophagus related neoplasia (BERN) is difficult to detect and characterize during endoscopy, even for expert endoscopists. We aimed to assess the add-on effect of an Artificial Intelligence (AI) algorithm (Barrett-Ampel) as a decision support system (DSS) for non-expert endoscopists in the evaluation of Barrett’s esophagus (BE) and BERN. Methods Twelve videos with multimodal imaging white light (WL), narrow-band imaging (NBI), texture and color enhanced imaging (TXI) of histologically confirmed BE and BERN were assessed by expert and non-expert endoscopists. For each video, endoscopists were asked to identify the area of BERN and decide on the biopsy spot. Videos were assessed by the AI algorithm and regions of BERN were highlighted in real-time by a transparent overlay. Finally, endoscopists were shown the AI videos and asked to either confirm or change their initial decision based on the AI support. Results Barrett-Ampel correctly identified all areas of BERN, irrespective of the imaging modality (WL, NBI, TXI), but misinterpreted two inflammatory lesions (Accuracy=75%). Expert endoscopists had a similar performance (Accuracy=70,8%), while non-experts had an accuracy of 58.3%. When AI was implemented as a DSS, non-expert endoscopists improved their diagnostic accuracy to 75%. Conclusions AI may have the potential to support non-expert endoscopists in the assessment of videos of BE and BERN. Limitations of this study include the low number of videos used. Randomized clinical trials in a real-life setting should be performed to confirm these results. KW - Artificial Intelligence KW - Barrett's Esophagus KW - Speiseröhrenkrankheit KW - Künstliche Intelligenz KW - Diagnose Y1 - 2022 U6 - https://doi.org/10.1055/s-00000012 VL - 54 IS - S 01 SP - S39 PB - Thieme ER - TY - JOUR A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - ARTIFICIAL INTELLIGENCE (AI) – ASSISTED VESSEL AND TISSUE RECOGNITION IN THIRD-SPACE ENDOSCOPY JF - Endoscopy N2 - Aims Third-space endoscopy procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex interventions with elevated risk of operator-dependent adverse events, such as intra-procedural bleeding and perforation. We aimed to design an artificial intelligence clinical decision support solution (AI-CDSS, “Smart ESD”) for the detection and delineation of vessels, tissue structures, and instruments during third-space endoscopy procedures. Methods Twelve full-length third-space endoscopy videos were extracted from the Augsburg University Hospital database. 1686 frames were annotated for the following categories: Submucosal layer, blood vessels, electrosurgical knife and endoscopic instrument. A DeepLabv3+neural network with a 101-layer ResNet backbone was trained and validated internally. Finally, the ability of the AI system to detect visible vessels during ESD and POEM was determined on 24 separate video clips of 7 to 46 seconds duration and showing 33 predefined vessels. These video clips were also assessed by an expert in third-space endoscopy. Results Smart ESD showed a vessel detection rate (VDR) of 93.94%, while an average of 1.87 false positive signals were recorded per minute. VDR of the expert endoscopist was 90.1% with no false positive findings. On the internal validation data set using still images, the AI system demonstrated an Intersection over Union (IoU), mean Dice score and pixel accuracy of 63.47%, 76.18% and 86.61%, respectively. Conclusions This is the first AI-CDSS aiming to mitigate operator-dependent limitations during third-space endoscopy. Further clinical trials are underway to better understand the role of AI in such procedures. KW - Artificial Intelligence KW - Third-Space Endoscopy KW - Smart ESD Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1745037 VL - 54 IS - S01 SP - S175 PB - Thieme ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Artificial Intelligence (AI) – assisted vessel and tissue recognition during third space endoscopy (Smart ESD) T2 - Zeitschrift für Gastroenterologie N2 - Clinical setting  Third space procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex minimally invasive techniques with an elevated risk for operator-dependent adverse events such as bleeding and perforation. This risk arises from accidental dissection into the muscle layer or through submucosal blood vessels as the submucosal cutting plane within the expanding resection site is not always apparent. Deep learning algorithms have shown considerable potential for the detection and characterization of gastrointestinal lesions. So-called AI – clinical decision support solutions (AI-CDSS) are commercially available for polyp detection during colonoscopy. Until now, these computer programs have concentrated on diagnostics whereas an AI-CDSS for interventional endoscopy has not yet been introduced. We aimed to develop an AI-CDSS („Smart ESD“) for real-time intra-procedural detection and delineation of blood vessels, tissue structures and endoscopic instruments during third-space endoscopic procedures. Characteristics of Smart ESD  An AI-CDSS was invented that delineates blood vessels, tissue structures and endoscopic instruments during third-space endoscopy in real-time. The output can be displayed by an overlay over the endoscopic image with different modes of visualization, such as a color-coded semitransparent area overlay, or border tracing (demonstration video). Hereby the optimal layer for dissection can be visualized, which is close above or directly at the muscle layer, depending on the applied technique (ESD or POEM). Furthermore, relevant blood vessels (thickness> 1mm) are delineated. Spatial proximity between the electrosurgical knife and a blood vessel triggers a warning signal. By this guidance system, inadvertent dissection through blood vessels could be averted. Technical specifications  A DeepLabv3+ neural network architecture with KSAC and a 101-layer ResNeSt backbone was used for the development of Smart ESD. It was trained and validated with 2565 annotated still images from 27 full length third-space endoscopic videos. The annotation classes were blood vessel, submucosal layer, muscle layer, electrosurgical knife and endoscopic instrument shaft. A test on a separate data set yielded an intersection over union (IoU) of 68%, a Dice Score of 80% and a pixel accuracy of 87%, demonstrating a high overlap between expert and AI segmentation. Further experiments on standardized video clips showed a mean vessel detection rate (VDR) of 85% with values of 92%, 70% and 95% for POEM, rectal ESD and esophageal ESD respectively. False positive measurements occurred 0.75 times per minute. 7 out of 9 vessels which caused intraprocedural bleeding were caught by the algorithm, as well as both vessels which required hemostasis via hemostatic forceps. Future perspectives  Smart ESD performed well for vessel and tissue detection and delineation on still images, as well as on video clips. During a live demonstration in the endoscopy suite, clinical applicability of the innovation was examined. The lag time for processing of the live endoscopic image was too short to be visually detectable for the interventionist. Even though the algorithm could not be applied during actual dissection by the interventionist, Smart ESD appeared readily deployable during visual assessment by ESD experts. Therefore, we plan to conduct a clinical trial in order to obtain CE-certification of the algorithm. This new technology may improve procedural safety and speed, as well as training of modern minimally invasive endoscopic resection techniques. KW - Artificial Intelligence KW - Medical Image Computing KW - Endoscopy KW - Bildgebendes Verfahren KW - Medizin KW - Künstliche Intelligenz KW - Endoskopie Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1755110 VL - 60 IS - 08 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - GEN A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Probst, Andreas A1 - Scheppach, Markus W. A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Ebigbo, Alanna T1 - Barrett-Ampel T2 - Zeitschrift für Gastroenterologie N2 - Hintergrund  Adenokarzinome des Ösophagus sind bis heute mit einer infausten Prognose vergesellschaftet (1). Obwohl Endoskopiker mit Barrett-Ösophagus als Präkanzerose konfrontiert werden, ist vor allem für nicht-Experten die Differenzierung zwischen Barrett-Ösophagus ohne Dysplasie und assoziierten Neoplasien mitunter schwierig. Existierende Biopsieprotokolle (z.B. Seattle Protokoll) sind oftmals unzuverlässig (2). Eine frühzeitige Diagnose des Adenokarzinoms ist allerdings von fundamentaler Bedeutung für die Prognose des Patienten. Forschungsansatz  Auf der Grundlage dieser Problematik, entwickelten wir in Kooperation mit dem Forschungslabor „Regensburg Medical Image Computing (ReMIC)“ der OTH Regensburg ein auf künstlicher Intelligenz (KI) basiertes Entscheidungsunterstützungssystem (CDSS). Das auf einer DeepLabv3+ neuronalen Netzwerkarchitektur basierende CDSS differenziert mittels Mustererkennung Barrett- Ösophagus ohne Dysplasie von Barrett-Ösophagus mit Dysplasie bzw. Neoplasie („Klassifizierung“). Hierbei werden gemittelte Ausgabewahrscheinlichkeiten mit einem vom Benutzer definierten Schwellenwert verglichen. Für Vorhersagen, die den Schwellenwert überschreiten, berechnen wir die Kontur der Region und die Fläche. Sobald die vorhergesagte Läsion eine bestimmte Größe in der Eingabe überschreitet, heben wir sie und ihren Umriss hervor. So ermöglicht eine farbkodierte Visualisierung eine Abgrenzung zwischen Dysplasie bzw. Neoplasie und normalem Barrett-Epithel („Segmentierung“). In einer Studie an Bildern in „Weißlicht“ (WL) und „Narrow Band Imaging“ (NBI) demonstrierten wir eine Sensitivität von mehr als 90% und eine Spezifität von mehr als 80% (3). In einem nächsten Schritt, differenzierte unser KI-Algorithmus Barrett- Metaplasien von assoziierten Neoplasien anhand von zufällig abgegriffenen Bildern in Echtzeit mit einer Accuracy von 89.9% (4). Darauf folgend, entwickelten wir unser System dahingehend weiter, dass unser Algorithmus nun auch dazu in der Lage ist, Untersuchungsvideos in WL, NBI und „Texture and Color Enhancement Imaging“ (TXI) in Echtzeit zu analysieren (5). Aktuell führen wir eine Studie in einem randomisiert-kontrollierten Ansatz an unveränderten Untersuchungsvideos in WL, NBI und TXI durch. Ausblick  Um Patienten mit aus Barrett-Metaplasien resultierenden Neoplasien frühestmöglich an „High-Volume“-Zentren überweisen zu können, soll unser KI-Algorithmus zukünftig vor allem Endoskopiker ohne extensive Erfahrung bei der Beurteilung von Barrett- Ösophagus in der Krebsfrüherkennung unterstützen. KW - Barrett-Ösophagus KW - Adenokarzinom KW - Künstliche Intelligenz KW - Speiseröhrenkrebs KW - Diagnose KW - Künstliche Intelligenz Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1755109 VL - 60 IS - 08 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Intraprozedurale Strukturerkennung bei Third-Space Endoskopie mithilfe eines Deep-Learning Algorithmus T2 - Zeitschrift für Gastroenterologie N2 - Einleitung Third-Space Interventionen wie die endoskopische Submukosadissektion (ESD) und die perorale endoskopische Myotomie (POEM) sind technisch anspruchsvoll und mit einem erhöhten Risiko für intraprozedurale Komplikationen wie Blutung oder Perforation assoziiert. Moderne Computerprogramme zur Unterstützung bei diagnostischen Entscheidungen werden unter Einsatz von künstlicher Intelligenz (KI) in der Endoskopie bereits erfolgreich eingesetzt. Ziel der vorliegenden Arbeit war es, relevante anatomische Strukturen mithilfe eines Deep-Learning Algorithmus zu detektieren und segmentieren, um die Sicherheit und Anwendbarkeit von ESD und POEM zu erhöhen. Methoden Zwölf Videoaufnahmen in voller Länge von Third-Space Endoskopien wurden aus der Datenbank des Universitätsklinikums Augsburg extrahiert. 1686 Einzelbilder wurden für die Kategorien Submukosa, Blutgefäß, Dissektionsmesser und endoskopisches Instrument annotiert und segmentiert. Mit diesem Datensatz wurde ein DeepLabv3+neuronales Netzwerk auf der Basis eines ResNet mit 101 Schichten trainiert und intern anhand der Parameter Intersection over Union (IoU), Dice Score und Pixel Accuracy validiert. Die Fähigkeit des Algorithmus zur Gefäßdetektion wurde anhand von 24 Videoclips mit einer Spieldauer von 7 bis 46 Sekunden mit 33 vordefinierten Gefäßen evaluiert. Anhand dieses Tests wurde auch die Gefäßdetektionsrate eines Experten in der Third-Space Endoskopie ermittelt. Ergebnisse Der Algorithmus zeigte eine Gefäßdetektionsrate von 93,94% mit einer mittleren Rate an falsch positiven Signalen von 1,87 pro Minute. Die Gefäßdetektionsrate des Experten lag bei 90,1% ohne falsch positive Ergebnisse. In der internen Validierung an Einzelbildern wurde eine IoU von 63,47%, ein mittlerer Dice Score von 76,18% und eine Pixel Accuracy von 86,61% ermittelt. Zusammenfassung Dies ist der erste KI-Algorithmus, der für den Einsatz in der therapeutischen Endoskopie entwickelt wurde. Präliminäre Ergebnisse deuten auf eine mit Experten vergleichbare Detektion von Gefäßen während der Untersuchung hin. Weitere Untersuchungen sind nötig, um die Leistung des Algorithmus im Vergleich zum Experten genauer zu eruieren sowie einen möglichen klinischen Nutzen zu ermitteln. KW - Deep Learning KW - Third-Space Endoscopy Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1745652 VL - 60 IS - 04 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Souza Jr., Luis Antonio de A1 - Pacheco, André G.C. A1 - Passos, Leandro A. A1 - Santana, Marcos Cleison S. A1 - Mendel, Robert A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Papa, João Paulo T1 - DeepCraftFuse: visual and deeply-learnable features work better together for esophageal cancer detection in patients with Barrett’s esophagus JF - Neural Computing and Applications N2 - Limitations in computer-assisted diagnosis include lack of labeled data and inability to model the relation between what experts see and what computers learn. Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their accountability and transparency level must be improved to transfer this success into clinical practice. The reliability of machine learning decisions must be explained and interpreted, especially for supporting the medical diagnosis. While deep learning techniques are broad so that unseen information might help learn patterns of interest, human insights to describe objects of interest help in decision-making. This paper proposes a novel approach, DeepCraftFuse, to address the challenge of combining information provided by deep networks with visual-based features to significantly enhance the correct identification of cancerous tissues in patients affected with Barrett’s esophagus (BE). We demonstrate that DeepCraftFuse outperforms state-of-the-art techniques on private and public datasets, reaching results of around 95% when distinguishing patients affected by BE that is either positive or negative to esophageal cancer. KW - Deep Learning KW - Speiseröhrenkrebs KW - Adenocarcinom KW - Endobrachyösophagus KW - Diagnose KW - Maschinelles Lernen KW - Machine learning KW - Adenocarcinoma KW - Object detector KW - Barrett’s esophagus KW - Deep Learning Y1 - 2024 U6 - https://doi.org/10.1007/s00521-024-09615-z VL - 36 SP - 10445 EP - 10459 PB - Springer CY - London ER - TY - GEN A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Probst, Andreas A1 - Scheppach, Markus W. A1 - Nagl, Sandra A1 - Schnoy, Elisabeth A1 - Römmele, Christoph A1 - Prinz, Friederike A1 - Schlottmann, Jakob A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Ebigbo, Alanna T1 - Einfluss von Künstlicher Intelligenz auf die Performance von niedergelassenen Gastroenterolog:innen bei der Beurteilung von Barrett-Ösophagus T2 - Zeitschrift für Gastroenterologie N2 - Einleitung  Die Differenzierung zwischen nicht dysplastischem Barrett-Ösophagus (NDBE) und mit Barrett-Ösophagus assoziierten Neoplasien (BERN) während der endoskopischen Inspektion erfordert viel Expertise. Die frühe Diagnosestellung ist wichtig für die weitere Prognose des Barrett-Karzinoms. In Deutschland werden Patient:innen mit einem Barrett-Ösophagus (BE) in der Regel im niedergelassenen Sektor überwacht. Ziele  Ziel ist es, den Einfluss von einem auf Künstlicher Intelligenz (KI) basierenden klinischen Entscheidungsunterstützungssystems (CDSS) auf die Performance von niedergelassenen Gastroenterolog:innen (NG) bei der Evaluation von Barrett-Ösophagus (BE) zu untersuchen. Methodik  Es erfolgte die prospektive Sammlung von 96 unveränderten hochauflösenden Videos mit Fällen von Patient:innen mit histologisch bestätigtem NDBE und BERN. Alle eingeschlossenen Fälle enthielten mindestens zwei der folgenden Darstellungsmethoden: HD-Weißlichtendoskopie, Narrow Band Imaging oder Texture and Color Enhancement Imaging. Sechs NG von sechs unterschiedlichen Praxen wurden als Proband:innen eingeschlossen. Es erfolgte eine permutierte Block-Randomisierung der Videofälle in entweder Gruppe A oder Gruppe B. Gruppe A implizierte eine Evaluation des Falls durch Proband:innen zunächst ohne KI und anschließend mit KI als CDSS. In Gruppe B erfolgte die Evaluation in umgekehrter Reihenfolge. Anschließend erfolgte eine zufällige Wiedergabe der so entstandenen Subgruppen im Rahmen des Tests. Ergebnis  In diesem Test konnte ein von uns entwickeltes KI-System (Barrett-Ampel) eine Sensitivität von 92,2%, eine Spezifität von 68,9% und eine Accuracy von 81,3% erreichen. Mit der Hilfe von KI verbesserte sich die Sensitivität der NG von 64,1% auf 71,2% (p<0,001) und die Accuracy von 66,3% auf 70,8% (p=0,006) signifikant. Eine signifikante Verbesserung dieser Parameter zeigte sich ebenfalls, wenn die Proband:innen die Fälle zunächst ohne KI evaluierten (Gruppe A). Wurde der Fall jedoch als Erstes mit der Hilfe von KI evaluiert (Gruppe B), blieb die Performance nahezu konstant. Schlussfolgerung  Es konnte ein performantes KI-System zur Evaluation von BE entwickelt werden. NG verbessern sich bei der Evaluation von BE durch den Einsatz von KI. KW - Barrett-Ösophagus KW - Künstliche Intelligenz Y1 - 2023 UR - https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0043-1771711 U6 - https://doi.org/10.1055/s-0043-1771711 VL - 61 IS - 8 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Nagl, Sandra A1 - Meinikheim, Michael A1 - Yip, Hon Chi A1 - Lau, Louis Ho Shing A1 - Chiu, Philip Wai Yan A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Effekt eines Künstliche Intelligenz (KI) – Algorithmus auf die Gefäßdetektion bei third space Endoskopien T2 - Zeitschrift für Gastroenterologie N2 - Einleitung  Third space Endoskopieprozeduren wie die endoskopische Submukosadissektion (ESD) und die perorale endoskopische Myotomie (POEM) sind technisch anspruchsvoll und gehen mit untersucherabhängigen Komplikationen wie Blutungen und Perforationen einher. Grund hierfür ist die unabsichtliche Durchschneidung von submukosalen Blutgefäßen ohne präemptive Koagulation. Ziele Die Forschungsfrage, ob ein KI-Algorithmus die intraprozedurale Gefäßerkennung bei ESD und POEM unterstützen und damit Komplikationen wie Blutungen verhindern könnte, erscheint in Anbetracht des erfolgreichen Einsatzes von KI bei der Erkennung von Kolonpolypen interessant. Methoden  Auf 5470 Einzelbildern von 59 third space Endoscopievideos wurden submukosale Blutgefäße annotiert. Zusammen mit weiteren 179.681 nicht-annotierten Bildern wurde ein DeepLabv3+neuronales Netzwerk mit dem ECMT-Verfahren für semi-supervised learning trainiert, um Blutgefäße in Echtzeit erkennen zu können. Für die Evaluation wurde ein Videotest mit 101 Videoclips aus 15 vom Trainingsdatensatz separaten Prozeduren mit 200 vordefinierten Gefäßen erstellt. Die Gefäßdetektionsrate, -zeit und -dauer, definiert als der Prozentsatz an Einzelbildern eines Videos bezogen auf den Goldstandard, auf denen ein definiertes Gefäß erkannt wurde, wurden erhoben. Acht erfahrene Endoskopiker wurden mithilfe dieses Videotests im Hinblick auf Gefäßdetektion getestet, wobei eine Hälfte der Videos nativ, die andere Hälfte nach Markierung durch den KI-Algorithmus angesehen wurde. Ergebnisse  Der mittlere Dice Score des Algorithmus für Blutgefäße war 68%. Die mittlere Gefäßdetektionsrate im Videotest lag bei 94% (96% für ESD; 74% für POEM). Die mediane Gefäßdetektionszeit des Algorithmus lag bei 0,32 Sekunden (0,3 Sekunden für ESD; 0,62 Sekunden für POEM). Die mittlere Gefäßdetektionsdauer lag bei 59,1% (60,6% für ESD; 44,8% für POEM) des Goldstandards. Alle Endoskopiker hatten mit KI-Unterstützung eine höhere Gefäßdetektionsrate als ohne KI. Die mittlere Gefäßdetektionsrate ohne KI lag bei 56,4%, mit KI bei 71,2% (p<0.001). Schlussfolgerung  KI-Unterstützung war mit einer statistisch signifikant höheren Gefäßdetektionsrate vergesellschaftet. Die mediane Gefäßdetektionszeit von deutlich unter einer Sekunde sowie eine Gefäßdetektionsdauer von größer 50% des Goldstandards wurden für den klinischen Einsatz als ausreichend erachtet. In prospektiven Anwendungsstudien sollte der KI-Algorithmus auf klinische Relevanz getestet werden. KW - Künstliche Intelligenz Y1 - 2023 U6 - https://doi.org/10.1055/s-0043-1771980 VL - 61 IS - 08 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Muzalyova, Anna A1 - Rauber, David A1 - Probst, Andreas A1 - Nagl, Sandra A1 - Römmele, Christoph A1 - Yip, Hon Chi A1 - Lau, Louis Ho Shing A1 - Gölder, Stefan Karl A1 - Schmidt, Arthur A1 - Kouladouros, Konstantinos A1 - Abdelhafez, Mohamed A1 - Walter, B. A1 - Meinikheim, Michael A1 - Chiu, Philip Wai Yan A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Künstliche Intelligenz erhöht die Gefäßerkennung von Endoskopikern bei third space Endoskopie T2 - Zeitschrift für Gastroenterologie N2 - Einleitung: Künstliche Intelligenz (KI)-Algorithmen unterstützen Endoskopiker bei der Erkennung und Charakterisierung von Kolonpolypen in der klinischen Praxis und führen zu einer Erhöhung der Adenomdetektionsrate. Auch bei therapeutischen Maßnahmen wie der endoskopischen Submukosadissektion (ESD) könne relevante anatomische Strukturen durch KI mit hoher Genauigkeit erkannt und im endoskopischen Bild in Echtzeit markiert werden. Der Effekt einer solchen Applikation auf die Gefäßdetektion von Endoskopikern ist bislang nicht erforscht. Ziele:  In dieser Studie wurde der Effekt eines KI-Algorithmus zur Echtzeit-Gefäßmarkierung bei ESD auf die Gefäßdetektionsrate von Endoskopikern untersucht. Methodik:  59 third space Endoskopievideos wurde aus der Datenbank des Universitätsklinikums Augsburg extrahiert. Auf 5470 Einzelbildern dieser Untersuchungen wurde submukosale Blutgefäße annotiert. Zusammen mit weiteren 179681 unmarkierten Bildern wurde ein DeepLabV3+ neuronales Netzwerk mit einer semi-supervised learning Methode darin trainiert, submukosale Blutgefäße auf dem endoskopischen Bild zu erkennen und in Echtzeit einzuzeichnen. Anhand eines Videotests mit 101 Videoclips und 200 vordefinierten Blutgefäßen wurden 19 Endoskopiker mit und ohne KI Unterstützung getestet. Ergebnis:  Der Algorithmus erkannte in dem Videotest 93.5% der Gefäße in einer Detektionszeit von im Median 0,3 Sekunden. Die Gefäßdetektionsrate von Endoskopikern erhöhte sich durch KI Unterstützung von 56,4% auf 72,4% (p<0.001). Die Gefäßdetektionszeit reduzierte sich durch KI-Unterstützung von 6,7 auf 5.2 Sekunden (p<0.001). Der Algorithmus zeigte eine Rate an falsch positiven Detektionen in 4.5% der Einzelbilder. Falsch positiv erkannte Strukturen wurde kürzer detektiert, als richtig positive (0.7 und 6.0 Sekunden, p<0.001). Schlussfolgerung:  KI Unterstützung führte zu einer erhöhten Gefäßdetektionsrate und schnelleren Gefäßdetektionszeit von Endoskopikern. Ein möglicher klinischer Effekt auf die intraprozedurale Komplikationsrate oder Operationszeit könnte in prospektiven Studien ermittelt werden. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1790087 VL - 62 IS - 09 SP - e830 PB - Georg Thieme Verlag KG ER - TY - GEN A1 - Roser, David A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Palm, Christoph A1 - Muzalyova, Anna A1 - Rauber, David A1 - Rückert, Tobias A1 - Parsa, Nasim A1 - Byrne, Michael F. A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Mensch-Maschine-Interaktion: Einfluss künstlicher Intelligenz auf das diagnostische Vertrauen von Endoskopikern bei der Beurteilung des Barrett-Ösophagus T2 - Zeitschrift für Gastroenterologie N2 - Ziele:  Das Ziel der Studie war es, den Einfluss von KI auf die diagnostische Sicherheit (Konfidenzniveau) von Endoskopikern anhand von BÖ-Videos zu untersuchen und mögliche Korrelationen mit der Untersuchungsqualität zu erforschen. Methodik:  22 Endoskopiker aus zwölf Zentren mit unterschiedlicher Barrett-Erfahrung untersuchten 96 standardisierte Endoskopievideos. Die Untersucher wurden in Experten und Nicht-Experten eingeteilt und nach dem Zufallsprinzip für die Bewertung der Videos mit oder ohne KI eingeteilt. Die Teilnehmer wurden in zwei Gruppen aufgeteilt: Arm A bewertete zunächst Videos ohne KI und dann mit KI, während Arm B die umgekehrte Reihenfolge einhielt. Die Untersucher hatten die Aufgabe, BÖ-assoziierte Neoplasien zu erkennen und ihr Konfidenzniveau sowohl mit als auch ohne KI auf einer Skala von 0 bis 9 anzugeben. Ergebnis:  In Arm A erhöhte der Einsatz von KI das Konfidenzniveau bei beiden signifikant (p<0.001). Bemerkenswert ist, dass jedoch nur Nicht-Experten durch die KI eine signifikante Verbesserung der Sensitivität und Spezifität (p<0.001 bzw. p<0.05) erfuhren. Während Experten ohne KI im Vergleich zu Nicht-Experten mit KI ein höheres Konfidenzniveau aufwiesen, gab es keinen signifikanten Unterschied in der Genauigkeit. In Arm B zeigten beide Gruppen eine signifikante Abnahme des Konfidenzniveaus (p<0.001) bei gleichbleibender Genauigkeit. Darüber hinaus wurden in 9% der Entscheidungen trotz korrekter KI eine falsche Wahl getroffen. Schlussfolgerung:  Der Einsatz künstlicher Intelligenz steigerte das Konfidenzniveau sowohl bei Experten als auch bei Nicht-Experten signifikant – ein Effekt, der im Studienmodell reversibel war. Darüber hinaus wiesen Experten mit oder ohne KI durchweg höhere Konfidenzniveaus auf als Nicht-Experten mit KI, trotz vergleichbarer Ergebnisse. Zudem konnte beobachtet werden, dass die Untersucher in 9% der Fälle die KI zuungunsten des Patienten ignorierten. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1789656 VL - 62 IS - 09 SP - e575 EP - e576 PB - Georg Thieme Verlag KG ER - TY - GEN A1 - Scheppach, Markus W. A1 - Nunes, Danilo Weber A1 - Arizi, X. A1 - Rauber, David A1 - Probst, Andreas A1 - Nagl, Sandra A1 - Römmele, Christoph A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Intraoperative Phasenerkennung bei endoskopischer Submukosadissektion mit Hilfe von künstlicher Intelligenz T2 - Zeitschrift für Gastroenterologie N2 - Einleitung:  Künstliche Intelligenz (KI) wird in der Endoskopie des Gastrointestinaltraktes zur Erkennung und Charakterisierung von Kolonpolypen eingesetzt. Die Rolle von KI bei therapeutischen Maßnahmen wurde noch nicht eingehend untersucht. Eine intraprozedurale Phasenerkennung bei endoskopischer Submukoasdissektion (ESD) könnte die Erhebung von Qualitätsindikatoren ermöglichen. Weiterhin könnte diese Technologie zu einem tieferen Verständnis über die Eigenschaften der Prozedur führen und weiterführende Applikationen zur automatischen Dokumentation oder standardisiertem Training vorbereiten. Ziele: Ziel dieser Studie war die Entwicklung eines KI Algorithmus zur intraprozeduralen Phasenerkennung bei endoskopischer Submukosadissektion. Methodik:  2071546 Einzelbilder aus 27 ESD Videos in voller Länge wurden für die übergeordneten Klassen Diagnostik, Markierung, Nadelinjektion, Dissektion und Blutung, sowie die untergeordneten Klassen Endoskop-Manipulation, Injektion und Applikation von elektrischem Strom annotiert. Mit einem Trainingsdatensatz (898440 Einzelbilder, 17 ESDs) wurde ein Video Swin Transformer mit uniformer Stichprobenentnahme trainiert und intern validiert (769523 Einzelbilder, 6 ESDs). Neben der internen Validierung wurde der Algorithmus anhand von einem separaten Testdatensatz (403583 Einzelbilder, 4 ESDs) evaluiert. Ergebnis:  Der F1 Score des Algorithmus für alle Klassen lag in der internen Validierung bei 83%, in dem separaten Test bei 90%. Anhand des separaten Tests wurden true positive (TP)-Raten für Diagnostik, Markierung, Nadelinjektion, Dissektion und Blutung von 100%, 100%, 96%, 97% und 93% ermittelt. Für Endoskopmanipulation, Injektion und Applikation von Elektrizität lagen die TP-Raten bei 92%, 98% und 91%. Schlussfolgerung:  Der entwickelte Algorithmus klassifizierte ESD Videos in voller Länge und anhand jedes einzelnen Bildes mit hoher Genauigkeit. Zukünftige Forschungsvorhaben könnten intraoperative Qualitätsindikatioren auf Basis dieser Informationen entwickeln und eine automatisierte Dokumentation ermöglichen. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1790084 VL - 62 IS - 09 SP - e828 PB - Georg Thieme Verlag KG ER - TY - GEN A1 - Zellmer, Stephan A1 - Rauber, David A1 - Probst, Andreas A1 - Weber, Tobias A1 - Nagl, Sandra A1 - Römmele, Christoph A1 - Schnoy, Elisabeth A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Verwendung künstlicher Intelligenz bei der Detektion der Papilla duodeni major T2 - Zeitschrift für Gastroenterologie N2 - Einleitung Die Endoskopische Retrograde Cholangiopankreatikographie (ERCP) ist der Goldstandard in der Diagnostik und Therapie von Erkrankungen des pankreatobiliären Trakts. Jedoch ist sie technisch sehr anspruchsvoll und weist eine vergleichsweise hohe Komplikationsrate auf. Ziele  In der vorliegenden Machbarkeitsstudie soll geprüft werden, ob mithilfe eines Deep-learning-Algorithmus die Papille und das Ostium zuverlässig detektiert werden können und somit für Endoskopiker mit geringer Erfahrung ein geeignetes Hilfsmittel, insbesondere für die Ausbildungssituation, darstellen könnten. Methodik Wir betrachteten insgesamt 606 Bilddatensätze von 65 Patienten. In diesen wurde sowohl die Papilla duodeni major als auch das Ostium segmentiert. Anschließend wurde eine neuronales Netz mittels eines Deep-learning-Algorithmus trainiert. Außerdem erfolgte eine 5-fache Kreuzvaldierung. Ergebnisse Bei einer 5-fachen Kreuzvaldierung auf den 606 gelabelten Daten konnte für die Klasse Papille eine F1-Wert von 0,7908, eine Sensitivität von 0,7943 und eine Spezifität von 0,9785 erreicht werden, für die Klasse Ostium eine F1-Wert von 0,5538, eine Sensitivität von 0,5094 und eine Spezifität von 0,9970 (vgl. [Tab. 1]). Unabhängig von der Klasse zeigte sich gemittelt (Klasse Papille und Klasse Ostium) ein F1-Wert von 0,6673, eine Sensitivität von 0,6519 und eine Spezifität von 0,9877 (vgl. [Tab. 2]). Schlussfolgerung  In vorliegende Machbarkeitsstudie konnte das neuronale Netz die Papilla duodeni major mit einer hohen Sensitivität und sehr hohen Spezifität identifizieren. Bei der Detektion des Ostiums war die Sensitivität deutlich geringer. Zukünftig soll das das neuronale Netz mit mehr Daten trainiert werden. Außerdem ist geplant, den Algorithmus auch auf Videos anzuwenden. Somit könnte langfristig ein geeignetes Hilfsmittel für die ERCP etabliert werden. KW - Künstliche Intelligenz Y1 - 2023 UR - https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0043-1772000 U6 - https://doi.org/10.1055/s-0043-1772000 VL - 61 IS - 08 SP - e539 EP - e540 PB - Thieme CY - Stuttgart ER -