TY - PAT A1 - Muerrle, Ulrich A1 - Hornberger, Helga T1 - Method of making a ceramic restoration N2 - Production of a dental reconstruction comprises: (a) forming a mold (12) from a model (10); (b) using (12) to make an isotropically heat-expandable replica from a ceramic precursor (14); (c) oxidizing (14) to produce an enlarged ceramic replica; (d) forming a silicone mold from this replica; (e) using (d) to make a second ceramic replica; and (f) sintering the second replica with volume reduction to form a replica identical to (10). T2 - Verfahren zur Herstellung einer Zahnrestauration aus Keramik Y1 - 2003 UR - https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=EP000001346702A1 ER - TY - JOUR A1 - Manaranche, Claire A1 - Hornberger, Helga T1 - A proposal for the classification of precious dental alloys according to their resistance to corrosion based on the iso 10271 standard JF - European Cells and Materials N2 - A lot of dental alloys are available on the market. Among these alloys, there are the conventional alloys, the so called casting alloys used without ceramics, the bonding alloys used with high fusing ceramics and the universal alloys used without or with low fusing ceramics. It is im portant to know the physical and mechanical properties of these materials but also their biocompatibility and their resistance to corrosion. Dental alloys are generally placed in the mouth for many years, they must not induce adverse biological reactions such as gingival swelling and erythema, mucosal pain and lichenoid reactions. Although these troubles are often caused not by the materials itself (1, 2), they can be induced by the metallic ions released during their corrosion. In order to decrease the risks to the health, it is necessary to study the corrosion of the dental alloys. Currently, the ISO 10271 Standard (3), describes 3 different corrosion tests: a static immersion test (chemical corrosion), an electrochemic al test and a tarnish test. However, there are no indications yet about the possible interpretation of test results. In this paper, we propose a method to compare and classify the dental alloys in relation to their chemical and electrochemical corrosion results. METHODS: The material tested are pure metals such as gold, palladium, silver, copper and zinc as well as dental alloys which are commercially sold (see Table 1). 54 different materials have been tested. A minimum of four samples of each material were tested by electrochemic al corrosio n and a minimum of three in chemical test. The samples were cast and prepared as indicated by the manufacturer and by the ISO 10271. For the electrochemical test, the samples are in the form of disks 11 mm in diameter. They are tested with a potentiostat/galvanostat Voltalab Model 21. For the chemical test, the samples are rectangular with the dimensions 35X10X1.7 mm. The solution used and the operating conditions are described in the ISO 10271. The concentration of metallic ions released is measured by Induced Coupled Plasma Y1 - 2003 UR - https://www.researchgate.net/publication/242728857_A_proposal_for_the_classification_of_precious_dental_alloys_according_to_their_resistance_to_corrosion_based_on_the_ISO_10271_standard VL - 5 IS - SUPPL. 1 SP - 34 EP - 36 PB - Univ. of Wales CY - Aberystwyth, Wales ER -