TY - GEN A1 - Hausladen, Matthias A1 - Ławrowski, Robert Damian A1 - Schreiner, Rupert T1 - Fast Pulse Source for Field Emission Applications T2 - 7th ITG International Vacuum Electronics Workshop (IVEW) 2020 and 13th International Vacuum Electron Sources Conference (IVeSC) 2020, 26. - 29.5.2020, Bad Honnef Y1 - 2020 ER - TY - JOUR A1 - Schels, Andreas A1 - Herdl, Florian A1 - Hausladen, Matthias A1 - Wohlfartsstätter, Dominik A1 - Edler, Simon A1 - Bachmann, Michael A1 - Pahlke, Andreas A1 - Schreiner, Rupert A1 - Hansch, Walter T1 - Quantitative Field Emission Imaging for Studying the Doping-Dependent Emission Behavior of Silicon Field Emitter Arrays JF - Micromachines N2 - Field emitter arrays (FEAs) are a promising component for novel vacuum micro- and nanoelectronic devices, such as microwave power amplifiers or fast-switching X-ray sources. However, the interrelated mechanisms responsible for FEA degradation and failure are not fully understood. Therefore, we present a measurement method for quantitative observation of individual emission sites during integral operation using a low-cost, commercially available CMOS imaging sensor. The emission and degradation behavior of three differently doped FEAs is investigated in current-regulated operation. The measurements reveal that the limited current of the p-doped emitters leads to an activation of up to 55% of the individual tips in the array, while the activation of the n-type FEA stopped at around 30%. This enhanced activation results in a more continuous and uniform current distribution for the p-type FEA. An analysis of the individual emitter characteristics before and after a constant current measurement provides novel perspectives on degradation behavior. A burn-in process that trims the emitting tips to an integral current-specific ideal field enhancement factor is observed. In this process, blunt tips are sharpened while sharp tips are dulled, resulting in homogenization within the FEA. The methodology is described in detail, making it easily adaptable for other groups to apply in the further development of promising FEAs. Y1 - 2023 U6 - https://doi.org/10.3390/mi14112008 VL - 14 IS - 11 PB - MDPI ER - TY - CHAP A1 - Schels, Andreas A1 - Herdl, Florian A1 - Hausladen, Matthias A1 - Wohlfartsstätter, Dominik A1 - Bachmann, Michael A1 - Edler, Simon A1 - Düsberg, Felix A1 - Pahlke, Andreas A1 - Buchner, Philipp A1 - Schreiner, Rupert A1 - Hansch, Walter T1 - Beta Factor Mapping of Individual Emitting Tips During Integral Operation of Field Emission Arrays T2 - 2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA N2 - Emission uniformity mappings of field emitter arrays provide important insight into degradation mechanisms, but are often laborious, non-integral, costly, or not quantifiable. Here, a low-cost Raspberry Pi HQ camera is used as an extraction anode to quantify the emission distribution in field emitter arrays. A verification measurement using controlled SEM electron beams proves, that current-voltage characteristics of individual emission sites can be determined by combining the integral electrical data with the image data. The characteristics are used to quantify the field enhancement factors of an 30x30 silicon field emitter array during integral operation. Comparison of the field enhancement factor distributions before and after a one-hour constant current operation at 1 µA shows an increase from 50 actively emitting tips before to 156 after the measurement. It is shown, that the distribution of field enhancement factors shifts towards lower values, due to the increasing degradation for high field enhancement tips, especially above 1500. KW - field emission KW - field emission imaging KW - field emission distribution KW - field enhancement factor KW - CMOS imaging KW - beta factor Y1 - 2023 SN - 979-8-3503-0143-4 U6 - https://doi.org/10.1109/IVNC57695.2023.10188957 SP - 224 EP - 226 PB - IEEE ER - TY - CHAP A1 - Hausladen, Matthias A1 - Buchner, Philipp A1 - Schels, Andreas A1 - Edler, Simon A1 - Bachmann, Michael A1 - Schreiner, Rupert T1 - An Integrated Field Emission Electron Source on a Chip Fabricated by Laser-Micromachining and Mems Technology T2 - 2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA N2 - A silicon field emission electron source consisting of a cathode and a grid electrode has been fabricated by laser micromachining. The cathode features 21×21 tips on an area of 4×4 mm 2 , With a self-aligning MEMS technology for the aperture grid, a high electron transmission (99 %) was achieved. Onset voltages of 50…70 V were observed for an emission current of 1 nA. A stable emission current of 1 mA ± 1.3 % at an extraction voltage of 250 V was observed during a 30-min operation. KW - Apertures KW - Field Emission KW - Field Emission Array KW - Ions KW - Laser-Micromachining KW - Lasers KW - Micromechanical devices KW - Silicon KW - Silicon Field Emission Array KW - Steady-state KW - Vacuum systems Y1 - 2023 SN - 979-8-3503-0143-4 U6 - https://doi.org/10.1109/IVNC57695.2023.10189001 SP - 115 EP - 116 PB - IEEE ER - TY - CHAP A1 - Buchner, Philipp A1 - Hausladen, Matthias A1 - Schels, Andreas A1 - Herdl, Florian A1 - Edler, Simon A1 - Bachmann, Michael A1 - Schreiner, Rupert T1 - An Integrated Silicon Nanowire Field Emission Electron Source on a Chip with High Electron Transmission T2 - 2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA N2 - Silicon nanowire field emission arrays (50 × 50 pillars) were fabricated on a silicon glass hybrid wafer. The glass acts both as the support for the whole structure and insulator between cathode and extraction grid. The extraction grid matches the emitter structures and is optically aligned and adhered to the emitter chip by a vacuum compatible epoxide adhesive. These chips exhibit an emission current of about 600 μA at an extraction voltage of 300 V. The electron transmission through the grid is above 80 %. 58-hour longtime measurements were conducted showing low degradation of the emission current and high stability of electron transmission. KW - Semiconductor device measurement KW - Stimulated emission KW - Optical device fabrication KW - Glass KW - Power system stability KW - Insulators KW - Electron optics Y1 - 2023 SN - 979-8-3503-0143-4 U6 - https://doi.org/10.1109/IVNC57695.2023.10188878 SP - 6 EP - 8 PB - IEEE ER - TY - CHAP A1 - Hausladen, Matthias A1 - Schels, Andreas A1 - Buchner, Philipp A1 - Bartl, Mathias A1 - Asgharzade, Ali A1 - Edler, Simon A1 - Wohlfartsstätter, Dominik A1 - Bachmann, Michael A1 - Schreiner, Rupert T1 - Improved Method for Determining the Distribution of FEA Currents by Optical CMOS Sensors T2 - 37th International Vacuum Nanoelectronics Conference (IVNC), 15-19 July 2024, Brno, Czech Republic N2 - CMOS image sensors are utilized to determine the time- and spatially-resolved distribution of the electron emission of silicon field emission arrays. During initial experiments, rather low field emission currents already visibly damaged the sensor surface, altering the system accuracy over the measurement time. Therefore, we coated the sensor surface with copper for protection. In contrast to the original insulating surface, the Cu coating provides a conductive surface for incident electrons and improves heat dissipation in addition. This prevents localized surface charges and surface damages which stabilize the system accuracy. Y1 - 2024 U6 - https://doi.org/10.1109/IVNC63480.2024.10652543 SP - 1 EP - 2 PB - IEEE ER - TY - JOUR A1 - Bachmann, Michael A1 - Düsberg, Felix A1 - Pahlke, Andreas A1 - Edler, Simon A1 - Schels, Andreas A1 - Herdl, Florian A1 - Hausladen, Matthias A1 - Buchner, Philipp A1 - Schreiner, Rupert T1 - The “LED‐version” of the electron gun: An electron source for operation in ambient pressure environments based on silicon field emitter arrays JF - Vakuum in Forschung und Praxis N2 - We report on our progress to develop and optimize electron sources for practical applications. A simple fabrication process is introduced based on a wafer dicing saw and a wet chemical etch step without the need for a clean room. Due to the formation of crystal facets the samples show a homogeneous geometry throughout the array. Characterization techniques are developed to systematically compare various arrays. A very defined measurement procedure based on current controlled IV-sweeps as well as lifetime measurements at various currents is proposed. To investigate the current distribution in the array a commercial CMOS detector is used and shows the potential for in depth analysis of the arrays. Finally, a compact hermetically sealed housing is presented enabling electron generation in atmospheric pressure environments. Y1 - 2023 U6 - https://doi.org/10.1002/vipr.202300801 VL - 35 IS - 3 SP - 32 EP - 37 PB - Wiley ER - TY - JOUR A1 - Hausladen, Matthias A1 - Schels, Andreas A1 - Buchner, Philipp A1 - Bartl, Mathias A1 - Asgharzade, Ali A1 - Edler, Simon A1 - Wohlfartsstätter, Dominik A1 - Bachmann, Michael A1 - Schreiner, Rupert T1 - Measurement of field emission array current distributions by metal-coated CMOS image sensors JF - Journal of Vacuum Science & Technology B N2 - A CMOS image sensor is utilized to determine the time- and spatially resolved distribution of the total electron emission current of a silicon field emission array. The sensor measures electron emission without the need for phosphorus screens or scintillators as converters. However, in initial experiments, rather low field emission currents of several hundreds of nanoamperes per emitter already damaged the sensor surface, which altered the systems’ signal response over the measurement time. In consequence, we coated the CMOS sensor surface with a Cu layer for surface protection. In contrast to the original insulating surface, Cu is an excellent current- and heat-conductor, which avoids lens charging by providing a conductive path for incident electrons and has an improved heat dissipation capability. Measurements using a segmented field emission cathode with four individually addressable tips demonstrate a consistent correlation between the emission current and the sensor signal of the metal-coated image sensor. Furthermore, the characterization of a field emission array showed that single tip emission currents of up to 12 μA per tip are measurable without discernible damage effects of the sensor’s surface. KW - Bremsstrahlung KW - Laser micromachining KW - Image sensors KW - Field emitter arrays Y1 - 2024 U6 - https://doi.org/10.1116/6.0004074 VL - 42 IS - 6 PB - AIP Publishing ER - TY - JOUR A1 - Hausladen, Matthias A1 - Schels, Andreas A1 - Asgharzade, Ali A1 - Buchner, Philipp A1 - Bartl, Mathias A1 - Wohlfartsstätter, Dominik A1 - Edler, Simon A1 - Bachmann, Michael A1 - Schreiner, Rupert T1 - Investigation of Influencing Factors on the Measurement Signal of a CMOS Image Sensor for Measuring Field Emission Currents JF - Sensors Y1 - 2025 U6 - https://doi.org/10.3390/s25051529 N1 - Corresponding author der OTH Regensburg: Matthias Hausladen VL - 25 IS - 5 PB - MDPI ER - TY - CHAP A1 - Buchner, Philipp A1 - Hausladen, Matthias A1 - Bartl, Mathias A1 - Schreiner, Rupert T1 - Elektronenquellen basierend auf Feldemission aus Silizium T2 - Tagungsband zum 4. Symposium Elektronik und Systemintegration ESI: 17. April 2024, Hochschule Landshut N2 - Der Beitrag gibt einen Überblick über zwei typische Bauformen für Elektronenquellen auf der Basis von Feldemission aus Silizium. Des Weiteren wird eine typische Trioden-Beschaltung solcher Elektronenquellen für hohe Elektronentransmission vorgestellt und dabei auf ihre Leistungsfähigkeit eingegangen. Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:860-opus4-4212 SN - 978-3-9818439-9-6 SP - 46 EP - 53 PB - Hochschule für Angewandte Wissenschaften Landshut CY - Landshut ER -