TY - JOUR A1 - Steininger, Peter A1 - Gaderer, Matthias A1 - Dawoud, Belal T1 - Assessment of the Annual Transmission Heat Loss Reduction of a Refurbished Existing Building with an Advanced Solar Selective Thermal Insulation System JF - Sustainability N2 - A numerical parameter sensitivity analysis of the design parameters of the recently published solar selective thermal insulation system (SATIS) has been carried out to enhance its thermal and optical properties. It turned out that the insulation properties of SATIS can be effectively improved by reducing the length of the glass closure element. Increasing the area share of the light conducting elements (LCEs) and decreasing their length-to-diameter (L/D) ratio were identified as key parameters in order to increase the solar gain. Two SATIS variants were compared with the same wall insulation without SATIS in a yearly energetic performance assessment. The SATIS variant with 10 mm length of the closure element, 44.2% area share of LCE, as well as front and rear diameters of 12 mm/9 mm shows an 11.8% lower transmission heat loss over the heating period than the wall insulation without SATIS. A new methodology was developed to enable the implementation of the computed solar gains of SATIS in 1D simulation tools. The result is a radiant heat flow map for integration as a heat source in 1D simulation models. A comparison between the 1D and 3D models of the inside wall heat fluxes showed an integral yearly agreement of 98%. KW - effective thermal conductivity KW - parameter sensitivity analysis KW - radiant heat flow map KW - solar selective thermal insulation system (SATIS) KW - total solar energy transmittance KW - yearly energetic performance assessment Y1 - 2021 U6 - https://doi.org/10.3390/su13137336 N1 - Corresponding author: Belal Dawoud VL - 13 IS - 13 SP - 1 EP - 19 PB - MDPI CY - Basel ER - TY - JOUR A1 - Steininger, Peter A1 - Gaderer, Matthias A1 - Steffens, Oliver A1 - Dawoud, Belal T1 - Experimental and Numerical Study on the Heat Transfer Characteristics of a Newly-Developed Solar Active Thermal Insulation System JF - Buildings N2 - A newly-developed solar active thermal insulation system (SATIS) is introduced with the main objective to accomplish a highly-dependent total solar transmittance on the irradiation angle. SATIS is also designed to obtain the maximum transmittance at a prescribed design irradiation angle and to reduce it remarkably at higher irradiation angles. A purely mineral thermal insulation plaster with micro hollow glass spheres is applied to manufacture the investigated SATIS prototype. Light-conducting elements (LCEs) have been introduced into SATIS and suitable closing elements have been applied. The SATIS prototype has been investigated both experimentally and numerically. It turned out that the contributions of conduction, radiation and convection to the effective thermal conductivity of SATIS, without the closing elements (49 mWmK), amount to 86.2%, 13.2% and 0.6%, respectively. The angle-dependent short-wave radiation exchange within the LCE has been investigated via ray tracing. At the incidence angle of 19% (design angle), 27% of the radiation within the LCE is absorbed by the absorber plate, resulting in measured and computed total solar energy transmittances of 11.2%/11.7%, respectively. For a typical summer irradiation angle of 60%, 98% of the incident radiation is absorbed by the surfaces at the entrance of the LCE. The corresponding total solar energy transmittance amounts to 2.9%. KW - angle-dependent total solar energy transmittance KW - effective thermal conductivity KW - experimental investigation KW - numerical simulation KW - ray tracing KW - solar active thermal insulation system (SATIS) Y1 - 2021 U6 - https://doi.org/10.3390/buildings11030123 N1 - Corresponding author: Belal Dawoud VL - 11 IS - 3 SP - 1 EP - 22 PB - MDPI ER -