TY - JOUR A1 - Mikhaeil, Makram A1 - Nowak, Sebastian A1 - Palomba, Valeria A1 - Frazzica, Andrea A1 - Gaderer, Matthias A1 - Dawoud, Belal T1 - Experimental and analytical investigation of applying an asymmetric plate heat exchanger as an evaporator in a thermally driven adsorption appliance JF - Applied Thermal Engineering N2 - This communication presents an experimental and analytical study on the evaporation mechanism in a closed-structured asymmetric plate heat exchanger (PHE) employed as a stagnant water evaporator for the application in an adsorption heat transformation appliance. To this aim, an experimental unit is constructed, which comprises two identical PHEs, one acting as an vaporator/condenser and the second, as an adsorber/desorber. Two endoscopes are mounted inside the investigated evaporator to visualize the evaporation mechanism when performing adsorption-evaporation processes under different boundary conditions. It turned out that the evaporation mechanism is a partially covered, thin film evaporation. A heat transfer analysis is performed to evaluate the heat transfer coefficient of the thin film evaporation () inside the investigated evaporator, resulting in -values between 1330 and 160 [W∙m−2∙K−1] over the investigated adsorption-evaporation time. Correlating the obtained () to the film thickness and the wetted area results in -values between 0.34 and 0.78 [mm] and wetted to total area ratios of 0.78 to 0.16. Besides, an analytical model has been developed and introduced to correlate the overall evaporator heat transfer coefficient with the adsorption potential and the time rate of change of the water uptake. KW - Adsorption-evaporation KW - Evaporator KW - Plate heat exchanger KW - Thin film evaporation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-61115 N1 - Corresponding author: Belal Dawoud IS - 228 PB - Elsevier ER -