TY - CHAP A1 - Gärtner, Sebastian A1 - Rank, Daniel A1 - Heberl, Michael A1 - Gaderer, Matthias A1 - Sterner, Michael T1 - Integration of Power-To-Methane into Glass Melting Processes T2 - Proceedings of the International Renewable Energy Storage Conference (IRES 2022) N2 - The glass industry is facing increased challenges regarding climate protection targets and rising energy costs. The integration of renewable energy including conversion and storage is a key for both challenges in this energy-intensive industrial sector, which has been mainly relying on fossil gas so far. The options considered to this point for reducing CO2 emissions and switching to a renewable energy supply involve far-reaching changes of the established melting processes. This entails significant risks in terms of influences on glass quality and stable production volumes. The presented approach for the integration of a Power-to-Methane (PtM) system into the glass industry is a completely new concept and has not been considered in detail before. It allows the use of established oxyfuel melting processes, the integration of fluctuating renewable energy sources and a simultaneous reduction of CO2 emissions by more than 78%. At the same time, natural gas purchases become obsolete. A techno-economic evaluation of the complete PtM process shows, that 1,76 €/m3 or 1,26 €/kg synthetic natural gas are possible with renewable energy supply. Using electricity from the energy grid would require electricity prices < 0,126 €/kWh to allow cost competitive PtM processes in the glass industry. Such electricity prices could be achieved by electricity market-based optimization and operation of the PtM system. This operation strategy would require AI-based algorithms predicting availabilities and prices on future-based markets. KW - Power-to-Gas KW - Methanation KW - Glass Melting KW - Glass Industry KW - Decarbonisation Y1 - 2023 U6 - https://doi.org/10.2991/978-94-6463-156-2_12 SN - 2589-4943 VL - 16 SP - 147 EP - 161 PB - Atlantis Press ER - TY - JOUR A1 - Gärtner, Sebastian A1 - Marx-Schubach, Thomas A1 - Gaderer, Matthias A1 - Schmitz, Gerhard A1 - Sterner, Michael T1 - Techno-Economic Analysis of Carbon Dioxide Separation for an Innovative Energy Concept towards Low-Emission Glass Melting JF - energies N2 - The currently still high fossil energy demand is forcing the glass industry to search for innovative approaches for the reduction in CO2 emissions and the integration of renewable energy sources. In this paper, a novel power-to-methane concept is presented and discussed for this purpose. A special focus is on methods for the required CO2 capture from typical flue gases in the glass industry, which have hardly been explored to date. To close this research gap, process simulation models are developed to investigate post-combustion CO2 capture by absorption processes, followed by a techno-economic evaluation. Due to reduced flue gas volume, the designed CO2 capture plant is found to be much smaller (40 m3 absorber column volume) than absorption-based CO2 separation processes for power plants (12,560 m3 absorber column volume). As there are many options for waste heat utilization in the glass industry, the waste heat required for CO2 desorption can be generated in a particularly efficient and cost-effective way. The resulting CO2 separation costs range between 41 and 42 EUR/t CO2, depending on waste heat utilization for desorption. These costs are below the values of 50–65 EUR/t CO2 for comparable industrial applications. Despite these promising economic results, there are still some technical restrictions in terms of solvent degradation due to the high oxygen content in flue gas compositions. The results of this study point towards parametric studies for approaching these issues, such as the use of secondary and tertiary amines as solvents, or the optimization of operating conditions such as stripper pressure for further cost reductions potential. KW - economic evaluation KW - CO2-separation KW - glass industry KW - oxyfuel KW - methanation KW - power-to-gas Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-53627 N1 - Corresponding author: Sebastian Gärtner VL - 16 IS - 5 SP - 1 EP - 25 PB - MDPI CY - Basel ER -