TY - CHAP A1 - Altmann, Robert A1 - Gebhard, Jürgen A1 - Troeger, Adrian A1 - Winkler, Markus A1 - Töpfer, Georg A1 - Remmele, Edgar A1 - Gaderer, Matthias A1 - Rabl, Hans-Peter ED - Berns, Karsten ED - Dressler, Klaus ED - Kalmar, Ralf ED - Stephan, Nicole ED - Teutsch, Roman ED - Thul, Martin T1 - Engine performance and emission analysis of a NRMM CI engine with common rail injection system operated with diesel fuel and rapeseed oil fuel T2 - Proceedings of the 6th Commercial Vehicle Technology Symposium 2020/2021 N2 - The use of alternative fuels in high-power non-road mobile machinery (NRMM) combustion engines is a possible way to substitute fossil fuel. By using pure vegetable oil fuels, like rapeseed oil fuel (DIN 51605), the greenhouse gases can be reduced effectively. Due to the differences in physical and chemical properties, a modification of the engine control unit calibration is necessary to adapt the working process on the fuel. Without modifications, the engine power output with rapeseed oil fuel is lower than with diesel fuel because of the smaller energy content. By adapting the engine settings, like the injection fuel mass, the power loss can be compensated but it accompanies with a higher fuel consumption. The engine emissions at part load conditions show, that there are benefits in particle emissions by using rapeseed oil at similar NOx emissions. Therefore, a design of experiment setup was initiated on a selected engine operation point to determine the effects of further parameters, like rail pressure, manifold pressure and injection pattern, on the process and to see the potential of an optimized calibration. KW - CI engine KW - common rail injection KW - Diesel Engine KW - DoE KW - rapeseed oil Y1 - 2021 SN - 978-3-658-29716-9 U6 - https://doi.org/10.1007/978-3-658-29717-6_16 SP - 231 EP - 242 PB - Springer Vieweg CY - Wiesbaden ER - TY - JOUR A1 - Gamisch, Bernd A1 - Ettengruber, Stefan A1 - Gaderer, Matthias A1 - Dawoud, Belal T1 - Dynamic simulation of isothermal and non-isothermal reduction and oxidation reactions of iron oxide for a hydrogen storage process JF - Renewable and Sustainable Energy N2 - This work aims first to develop a dynamic lumped model for the isothermal reactions of hydrogen/steam with a single iron oxide/iron pellet inside a tubular reactor and to validate the model results against the experimental reaction kinetic data with the help of our STA device. To describe the temporal change in mass, and consequently, the temporal heat of reaction, the shrinking core model, based on the geometrical contracting sphere, is applied. It turned out that, the simulation model can reproduce the experimental, temporal concentration and temperature-dependent conversion rates with a maximum deviation of 4.6% during the oxidation reactions and 3.1% during the reduction reactions. In addition, a measured isothermal storage process comprising one reduction and one oxidation phase with a holding phase in between on a single reacting pellet could be reproduced with a maximum absolute deviation in the conversion rate of 1.5%. Moreover, a lumped, non-isothermal simulation model for a pelletized tubular redox-reactor including 2kg of iron oxide pellets has been established, in which the heat of reaction, heat transfer to the ambient and heat transfer between the solid and gas phases are considered. The temporal courses of the outlet gas concentration as well as the temperatures of the gas stream and the solid material at a constant input gas flow rate and a constant reacting gas inlet concentration but different input gas temperatures are estimated. Because of the endothermic nature of the reduction reaction, the inlet reacting gas temperature shall be kept high to prevent the severe temperature drop in the solid phase and, consequently, the significant reduction of the reaction rate. Contrary to that, the oxidation process requires lower input gas temperatures to avoid the excessive overheating of the reaction mass and, consequently, the sintering of the reacting pellets. Finally, five of the previous reactors have been connected in series to explore the influence of the changing inlet gas temperatures and concentrations on the dynamic performance of each storage mass. KW - hydrogen storage KW - iron/iron oxide KW - redox reactions KW - lumped model KW - isothermal reactions KW - non-isothermal reactions KW - kinetics of reactions KW - Aspen Custom Modeler Y1 - 2023 U6 - https://doi.org/10.55092/rse20230004 N1 - Corresponding author: Belal Dawoud VL - 1 IS - 1 PB - ELSP, International Open Science Platform ER - TY - JOUR A1 - Gamisch, Bernd A1 - Gaderer, Matthias A1 - Dawoud, Belal T1 - On the Development of Thermochemical Hydrogen Storage: An Experimental Study of the Kinetics of the Redox Reactions under Different Operating Conditions JF - Applied Sciences N2 - This work aims at investigating the reduction/oxidation (redox) reaction kinetics on iron oxide pellets under different operating conditions of thermochemical hydrogen storage. In order to reduce the iron oxide pellets (90% Fe2O3, 10% stabilizing cement), hydrogen (H2) is applied in different concentrations with nitrogen (N2), as a carrier gas, at temperatures between between 700 ∘C and 900 ∘C, thus simulating the charging phase. The discharge phase is triggered by the flow of a mixture out of steam (H2O) and N2 at different concentrations in the same temperature range, resulting in the oxidizing of the previously reduced pellets. All investigations were carried out in a thermo-gravimetric analyzer (TGA) with a flow rate of 250mL/min. To describe the obtained kinetic results, a simplified analytical model, based on the linear driving force model, was developed. The investigated iron oxide pellets showed a stable redox performance of 23.8% weight reduction/gain, which corresponds to a volumetric storage density of 2.8kWh/(L bulk), also after the 29 performed redox cycles. Recalling that there is no H2 stored during the storage phase but iron, the introduced hydrogen storage technology is deemed very promising for applications in urban areas as day-night or seasonal storage for green hydrogen. KW - hydrogen storage KW - iron/iron oxide KW - reaction kinetics KW - redox reactions Y1 - 2021 U6 - https://doi.org/10.3390/app11041623 N1 - Corresponding author: Belal Dawoud VL - 11 IS - 4 SP - 1 EP - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Gamisch, Bernd A1 - Huber, Lea A1 - Gaderer, Matthias A1 - Dawoud, Belal T1 - On the Kinetic Mechanisms of the Reduction and Oxidation Reactions of Iron Oxide/Iron Pellets for a Hydrogen Storage Process JF - Energies N2 - This work aims at investigating the kinetic mechanisms of the reduction/oxidation (redox) reactions of iron oxide/iron pellets under different operating conditions. The reaction principle is the basis of a thermochemical hydrogen storage system. To simulate the charging phase, a single pellet consisting of iron oxide (90% Fe2O3, 10% stabilising cement) is reduced with different hydrogen (H2) concentrations at temperatures between 600 and 800 °C. The discharge phase is initiated by the oxidation of the previously reduced pellet by water vapour (H2O) at different concentrations in the same temperature range. In both reactions, nitrogen (N2) is used as a carrier gas. The redox reactions have been experimentally measured in a thermogravimetric analyser (TGA) at a flow rate of 250 mL/min. An extensive literature review has been conducted on the existing reactions’ kinetic mechanisms along with their applicability to describe the obtained results. It turned out that the measured kinetic results can be excellently described with the so-called shrinking core model. Using the geometrical contracting sphere reaction mechanism model, the concentration- and temperature-dependent reduction and oxidation rates can be reproduced with a maximum deviation of less than 5%. In contrast to the reduction process, the temperature has a smaller effect on the oxidation reaction kinetics, which is attributed to 71% less activation energy (Ea,Re=56.9 kJ/mol versus Ea,Ox=16.0 kJ/mol). The concentration of the reacting gas showed, however, an opposite trend: namely, to have an almost twofold impact on the oxidation reaction rate constant compared to the reduction rate constant. Y1 - 2022 U6 - https://doi.org/10.3390/en15218322 N1 - Corresponding author: Belal Dawoud VL - 15 IS - 21 PB - MDPI ER - TY - INPR A1 - Gärtner, Sebastian A1 - Marx-Schubach, Thomas A1 - Gaderer, Matthias A1 - Schmitz, Gerhard A1 - Sterner, Michael T1 - Introduction of an Innovative Energy Concept for low Emission Glass Melting based on Carbon Capture and Usage N2 - Due to the very high fossil energy demand, the glass industry is looking for innovative approaches for the reduction of CO2 emissions and the integration of renewable energy sources. In this paper, we present a novel power-to-gas concept, which has no impact on established melting processes and discuss it for this purpose. A special focus is set on the required CO2 capture from typical flue gases in the glass industry, as this process has not been investigated in detail yet. We used a process simulation approach to investigate post-combustion CO2 capture by absorption processes, followed by a techno-economic evaluation. Our investigations found the designed CO2 capture plant to be approx. 400 times smaller than absorption based CO2 separation processes for conventional power plants. Due to the many options for waste heat utilization, the waste heat required for CO2 desorption can be generated in a particularly efficient and cost-effective way. The resulting CO2 avoidance costs range between 41-42 €/t CO2, depending on waste heat utilization for desorption, and thus offer a cost effective way of CO2 removal from glass industry melting processes. These costs are well below the values of 50-65 €/t CO2 described so far for comparable industrial applications. In addition, we describe optimization options, like solvent and process improvements, to enable further cost reductions. These results motivate further research and development on the overall process presented in this work. KW - glass KW - Oxyfuel KW - Methanation KW - Power-to-Gas KW - CO2 capture KW - Economic Analysis Y1 - 2022 U6 - https://doi.org/10.31224/2642 ER - TY - JOUR A1 - Gärtner, Sebastian A1 - Marx-Schubach, Thomas A1 - Gaderer, Matthias A1 - Schmitz, Gerhard A1 - Sterner, Michael T1 - Techno-Economic Analysis of Carbon Dioxide Separation for an Innovative Energy Concept towards Low-Emission Glass Melting JF - energies N2 - The currently still high fossil energy demand is forcing the glass industry to search for innovative approaches for the reduction in CO2 emissions and the integration of renewable energy sources. In this paper, a novel power-to-methane concept is presented and discussed for this purpose. A special focus is on methods for the required CO2 capture from typical flue gases in the glass industry, which have hardly been explored to date. To close this research gap, process simulation models are developed to investigate post-combustion CO2 capture by absorption processes, followed by a techno-economic evaluation. Due to reduced flue gas volume, the designed CO2 capture plant is found to be much smaller (40 m3 absorber column volume) than absorption-based CO2 separation processes for power plants (12,560 m3 absorber column volume). As there are many options for waste heat utilization in the glass industry, the waste heat required for CO2 desorption can be generated in a particularly efficient and cost-effective way. The resulting CO2 separation costs range between 41 and 42 EUR/t CO2, depending on waste heat utilization for desorption. These costs are below the values of 50–65 EUR/t CO2 for comparable industrial applications. Despite these promising economic results, there are still some technical restrictions in terms of solvent degradation due to the high oxygen content in flue gas compositions. The results of this study point towards parametric studies for approaching these issues, such as the use of secondary and tertiary amines as solvents, or the optimization of operating conditions such as stripper pressure for further cost reductions potential. KW - economic evaluation KW - CO2-separation KW - glass industry KW - oxyfuel KW - methanation KW - power-to-gas Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-53627 N1 - Corresponding author: Sebastian Gärtner VL - 16 IS - 5 SP - 1 EP - 25 PB - MDPI CY - Basel ER - TY - JOUR A1 - Gärtner, Sebastian A1 - Rank, Daniel A1 - Heberl, Michael A1 - Gaderer, Matthias A1 - Dawoud, Belal A1 - Haumer, Anton A1 - Sterner, Michael T1 - Simulation and Techno-Economic Analysis of a Power-to-Hydrogen Process for Oxyfuel Glass Melting JF - Energies N2 - As an energy-intensive industry sector, the glass industry is strongly affected by the increasingly stringent climate protection targets. As established combustion-based production systems ensure high process stability and glass quality, an immediate switch to low greenhouse gas emission processes is difficult. To approach these challenges, this work investigates a step-by-step integration of a Power-to-Hydrogen concept into established oxyfuel glass melting processes using a simulation approach. This is complemented by a case study for economic analysis on a selected German glass industry site by simulating the power production of a nearby renewable energy park and subsequent optimization of the power-to-hydrogen plant performance and capacities. The results of this study indicate, that the proposed system can reduce specific carbon dioxide emissions by up to 60%, while increasing specific energy demand by a maximum of 25%. Investigations of the impact of altered combustion and furnace properties like adiabatic flame temperature (+25 °C), temperature efficiency (∆ξ = −0.003) and heat capacity flow ratio (∆zHL = −0.009) indicate that pure hydrogen-oxygen combustion has less impact on melting properties than assumed so far. Within the case study, high CO2 abatement costs of 295 €/t CO2-eq. were determined. This is mainly due to the insufficient performance of renewable energy sources. The correlations between process scaling and economic parameters presented in this study show promising potential for further economic optimization of the proposed energy system in the future. KW - Power-to-Gas KW - Hydrogen KW - Electrolysis KW - Oxyfuel KW - Glass Industry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-22713 N1 - Corresponding author: Sebastian Gärtner VL - 14 IS - 24 PB - MDPI ER - TY - CHAP A1 - Gärtner, Sebastian A1 - Rank, Daniel A1 - Heberl, Michael A1 - Gaderer, Matthias A1 - Sterner, Michael T1 - Integration of Power-To-Methane into Glass Melting Processes T2 - Proceedings of the International Renewable Energy Storage Conference (IRES 2022) N2 - The glass industry is facing increased challenges regarding climate protection targets and rising energy costs. The integration of renewable energy including conversion and storage is a key for both challenges in this energy-intensive industrial sector, which has been mainly relying on fossil gas so far. The options considered to this point for reducing CO2 emissions and switching to a renewable energy supply involve far-reaching changes of the established melting processes. This entails significant risks in terms of influences on glass quality and stable production volumes. The presented approach for the integration of a Power-to-Methane (PtM) system into the glass industry is a completely new concept and has not been considered in detail before. It allows the use of established oxyfuel melting processes, the integration of fluctuating renewable energy sources and a simultaneous reduction of CO2 emissions by more than 78%. At the same time, natural gas purchases become obsolete. A techno-economic evaluation of the complete PtM process shows, that 1,76 €/m3 or 1,26 €/kg synthetic natural gas are possible with renewable energy supply. Using electricity from the energy grid would require electricity prices < 0,126 €/kWh to allow cost competitive PtM processes in the glass industry. Such electricity prices could be achieved by electricity market-based optimization and operation of the PtM system. This operation strategy would require AI-based algorithms predicting availabilities and prices on future-based markets. KW - Power-to-Gas KW - Methanation KW - Glass Melting KW - Glass Industry KW - Decarbonisation Y1 - 2023 U6 - https://doi.org/10.2991/978-94-6463-156-2_12 SN - 2589-4943 VL - 16 SP - 147 EP - 161 PB - Atlantis Press ER - TY - JOUR A1 - Mikhaeil, Makram A1 - Gaderer, Matthias A1 - Dawoud, Belal T1 - Experimental Investigation of the Adsorption and Desorption Kinetics on an Open-Structured Asymmetric Plate Heat Exchanger; Matching Between Small-Scale and Full-Scale Results JF - Frontiers in Energy Research N2 - This paper introduces the results of an experimental study on the adsorption and desorption kinetics of a commercially available, open-structured asymmetric plate heat exchanger adapted to act as an adsorber/desorber for the application in adsorption heat transformation processes. In addition, a volumetric large temperature jump (V-LTJ) kinetic setup was applied to measure the adsorption and desorption kinetics of a small-scale adsorbent sample prepared dedicatedly to be representative for the adsorbent domain inside the investigated adsorber plate heat exchanger (APHE). All kinetic results of the small-scale adsorbent sample and the APHE were fitted into exponential forms with a single characteristic time constant (τ) with a coefficient of determination (R2) better than 0.9531. A very good matching between the small-scale and full-scale adsorption kinetic measurements was obtained, with an average relative deviation of 12.3% in the obtained τ-values. In addition, the kinetic data of the small-scale adsorbent sample were utilized for estimating the expected specific instantaneous and moving average powers of the evaporator/condenser heat exchanger. The average relative deviation (ARD) between the moving average specific evaporator powers obtained from the small-scale and the full-scale measurements amounts between 5.4 and 15.1%. Y1 - 2022 U6 - https://doi.org/10.3389/fenrg.2022.818486 N1 - Corresponding author: Belal Dawoud VL - 10 SP - 1 EP - 15 PB - Frontiers ER - TY - JOUR A1 - Mikhaeil, Makram A1 - Gaderer, Matthias A1 - Dawoud, Belal T1 - On the application of adsorber plate heat exchangers in thermally driven chillers BT - An experimental and analytical study JF - Applied Thermal Engineering N2 - The effect of both heat and mass transfer characteristic lengths (HTCL, MTCL) of two different adsorber plate heat exchangers (APHE), for application in an adsorption chiller, on the adsorption and desorption kinetics is investigated. Three representative test frames (TF1-TF3) are prepared to examine small-scale adsorbent samples of the microporous silica gel (Siogel of Oker-Chemie, Germany) applying the volumetric large-temperature-jump methodology at different operating conditions. Based on the obtained kinetic data, an analytical model has been developed to predict the specific cooling power (SCP) and the coefficient of performance (COP) of a single-bed adsorption chiller comprising the studied APHEs. It turned out that, within the tested range of HTCL and MTCL, it can be concluded that, the adsorption kinetics are mainly influenced by the MTCL, while the desorption kinetics are dominated by the HTCL of the adsorbent domain. Applying Siogel as loose pellets inside a newly introduced APHE results in of 423.3 and 182.7 W⋅kg−1, at the evaporator temperatures of 15 °C and 5 °C, respectively. Herein, the condenser and adsorber-end temperatures amount to 30 °C and the desorption-end temperature to 90 °C. The corresponding s amount to 0.50 and 0.40, respectively, which represent quite promising results for further design optimizations. Y1 - 2023 U6 - https://doi.org/10.1016/j.applthermaleng.2022.119713 VL - 220 PB - Elsevier ER -