TY - JOUR A1 - Wall, Simone A1 - Krenzer, Boris A1 - Wippermann, Stefan A1 - Sanna, Simone A1 - Klasing, Friedrich A1 - Hanisch-Blicharski, Anja A1 - Kammler, Martin A1 - Schmidt, Wolf Gero A1 - Horn-von Hoegen, Michael T1 - Atomistic picture of charge density wave formation at surfaces JF - Physical review letters N2 - We used ultrafast electron diffraction and density-functional theory calculations to gain insight into the charge density wave (CDW) formation on In/Si(111). Weak excitation by a femtosecond-laser pulse results in the melting of the CDW. The immediate freezing is hindered by a barrier for the motion of atoms during the phase transition: The melted CDW constitutes a long-lived, supercooled phase and is strong evidence for a first-order transition. The freezing into the CDW is triggered by preexisting adsorbates. Starting at these condensation nuclei, the CDW expands one dimensionally on the In/Si(111) surface, with a constant velocity of more than 80 m/s. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevLett.109.186101 VL - 109 IS - 18 PB - APS ER - TY - JOUR A1 - Frigge, Tim A1 - Kalus, Annika A1 - Klasing, Friedrich A1 - Kammler, Martin A1 - Hanisch-Blicharski, Anja A1 - Horn-von Hoegen, Michael T1 - Nanoscale Heat Transport in Self-Organized Ge Clusters on Si(001) JF - MRS Online Proceedings Library N2 - Ultrafast time resolved transmission electron diffraction (TED) in a reflection geometry was used to study the cooling behavior of self-organized, well defined nanoscale germanium hut and dome clusters on Si(001). The clusters were heated in a pump-probe scheme by fs-laser pulses. The resulting transient temperature rise was then determined from the drop in diffraction intensity caused by the Debye-Waller effect. From a cooling time of τ=177 ps we estimated a strongly reduced heat transfer compared with homogeneous films of equivalent thickness. Y1 - 2012 U6 - https://doi.org/10.1557/opl.2013.148 SP - 45 EP - 50 PB - Springer ER -