TY - JOUR A1 - Lindner, Matthias A1 - Pipa, Andrei V. A1 - Karpen, Norbert A1 - Hink, Ruediger A1 - Berndt, Dominik A1 - Foest, RĂ¼diger A1 - Bonaccurso, Elmar A1 - Weichwald, Robert A1 - Friedberger, Alois A1 - Caspari, Ralf A1 - Brandenburg, Ronny A1 - Schreiner, Rupert T1 - Icing Mitigation by MEMS-Fabricated Surface Dielectric Barrier Discharge JF - Applied Sciences N2 - Avoiding ice accumulation on aerodynamic components is of enormous importance to flight safety. Novel approaches utilizing surface dielectric barrier discharges (SDBDs) are expected to be more efficient and effective than conventional solutions for preventing ice accretion on aerodynamic components. In this work, the realization of SDBDs based on thin-film substrates by means of micro-electro-mechanical-systems (MEMS) technology is presented. The anti-icing performance of the MEMS SDBDs is presented and compared to SDBDs manufactured by printed circuit board (PCB) technology. It was observed that the 35 mu m thick electrodes of the PCB SDBDs favor surface icing with an initial accumulation of supercooled water droplets at the electrode impact edges. This effect was not observed for 0.3 mu m thick MEMS-fabricated electrodes indicating a clear advantage for MEMS-technology SDBDs for anti-icing applications. Titanium was identified as the most suitable material for MEMS electrodes. In addition, an optimization of the MEMS-SDBDs with respect to the dielectric materials as well as SDBD design is discussed. KW - aerospace engineering KW - anti-icing KW - DBD PLASMA ACTUATORS KW - EXCITATION KW - FLOW-CONTROL KW - low-temperature plasma KW - MEMS KW - SEPARATION CONTROL KW - SDBD Y1 - 2021 U6 - https://doi.org/10.3390/app112311106 N1 - Corresponding author: Matthias Lindner VL - 11 IS - 23 SP - 1 EP - 17 PB - MDPI CY - Basel ER -