TY - GEN A1 - Melzner, Maximilian A1 - Ismail, Khaled A1 - Rušavý, Zdeněk A1 - Kališ, Vladimír A1 - Süß, Franz A1 - Dendorfer, Sebastian T1 - Musculoskeletal Lower Back Load of Accoucheurs During Delivery T2 - 26th Congress of the European Society of Biomechanics, July 11-14, 2021, Milan, Italy N2 - With the progress in modern medicine, it was possible to significantly reduce the risks of birth for mother and child. One aspect that has received less attention so far is the risk of injury to the accoucheurs (obstetricians and midwives) during the birth process. Indeed, studies indicate that 92% of midwives suffer from musculoskeletal disorders, with the lower back being the main cause of complaints (72%). The aim of this study was to investigate two commonly used postural techniques used by accoucheurs during childbirth and to analyze the resulting load on the lower back using the AnyBodyTM musculoskeletal simulation software. Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-20208 CY - Milan ER - TY - JOUR A1 - Melzner, Maximilian A1 - Ismail, Khaled A1 - Rušavy, Zdenek A1 - Kališ, Vladimír A1 - Süß, Franz A1 - Dendorfer, Sebastian T1 - Musculoskeletal lower back load of accoucheurs during childbirth – A pilot and feasibility study JF - European Journal of Obstetrics & Gynecology and Reproductive Biology N2 - Introduction: Back problems represent one of the leading causes of accouchers' work-related musculoskeletal morbidities. The correct execution of birth-related maneuvers including manual perineal protection is crucial not only for the mother and child but also for obstetricians and midwives to reduce any strain on their musculoskeletal system. Therefore, the overall aim of this study was to test the feasibility of determining the effect of different accouchers' postures (standing and kneeling) on their musculoskeletal system. Methods: The biomechanical analysis is based on musculoskeletal simulations that included motion recordings of real deliveries as well as deliveries conducted on a birthing simulator. These simulations were then used to determine individual joints' loads. Results: In the kneeling posture, both a low intra-operator variability and a lower average maximum load of the lower back was observed. For the standing position the spine load was reduced by pivoting the elbow on the accouchers' thigh, which in turn was associated with a significantly greater load on the shoulder joint. Conclusion: The study demonstrated the feasibility of our technique to assess joints loads. It also provided initial data indicating that a posture that reduces spinal flexion and tilt, achieved in this study by the kneeling, can significantly reduce the strain on the practitioner's musculoskeletal system. KW - lower back load KW - Accoucheur KW - Musculoskeletal simulation Y1 - 2021 U6 - https://doi.org/10.1016/j.ejogrb.2021.07.042 IS - 264 SP - 306 EP - 313 PB - Elsevier ER -