TY - JOUR A1 - Hammer, Simone A1 - Nunes, Danilo Weber A1 - Hammer, Michael A1 - Zeman, Florian A1 - Akers, Michael A1 - Götz, Andrea A1 - Balla, Annika A1 - Doppler, Michael Christian A1 - Fellner, Claudia A1 - Da Platz Batista Silva, Natascha A1 - Thurn, Sylvia A1 - Verloh, Niklas A1 - Stroszczynski, Christian A1 - Wohlgemuth, Walter Alexander A1 - Palm, Christoph A1 - Uller, Wibke T1 - Deep learning-based differentiation of peripheral high-flow and low-flow vascular malformations in T2-weighted short tau inversion recovery MRI JF - Clinical hemorheology and microcirculation N2 - BACKGROUND Differentiation of high-flow from low-flow vascular malformations (VMs) is crucial for therapeutic management of this orphan disease. OBJECTIVE A convolutional neural network (CNN) was evaluated for differentiation of peripheral vascular malformations (VMs) on T2-weighted short tau inversion recovery (STIR) MRI. METHODS 527 MRIs (386 low-flow and 141 high-flow VMs) were randomly divided into training, validation and test set for this single-center study. 1) Results of the CNN's diagnostic performance were compared with that of two expert and four junior radiologists. 2) The influence of CNN's prediction on the radiologists' performance and diagnostic certainty was evaluated. 3) Junior radiologists' performance after self-training was compared with that of the CNN. RESULTS Compared with the expert radiologists the CNN achieved similar accuracy (92% vs. 97%, p = 0.11), sensitivity (80% vs. 93%, p = 0.16) and specificity (97% vs. 100%, p = 0.50). In comparison to the junior radiologists, the CNN had a higher specificity and accuracy (97% vs. 80%, p <  0.001; 92% vs. 77%, p <  0.001). CNN assistance had no significant influence on their diagnostic performance and certainty. After self-training, the junior radiologists' specificity and accuracy improved and were comparable to that of the CNN. CONCLUSIONS Diagnostic performance of the CNN for differentiating high-flow from low-flow VM was comparable to that of expert radiologists. CNN did not significantly improve the simulated daily practice of junior radiologists, self-training was more effective. KW - magnetic resonance imaging KW - deep learning KW - Vascular malformation Y1 - 2024 U6 - https://doi.org/10.3233/CH-232071 SP - 1 EP - 15 PB - IOP Press ET - Pre-press ER - TY - JOUR A1 - Ruewe, Marc A1 - Eigenberger, Andreas A1 - Klein, Silvan A1 - von Riedheim, Antonia A1 - Gugg, Christine A1 - Prantl, Lukas A1 - Palm, Christoph A1 - Weiherer, Maximilian A1 - Zeman, Florian A1 - Anker, Alexandra T1 - Precise Monitoring of Returning Sensation in Digital Nerve Lesions by 3-D Imaging: A Proof-of-Concept Study JF - Plastic and Reconstructive Surgery N2 - Digital nerve lesions result in a loss of tactile sensation reflected by an anesthetic area (AA) at the radial or ulnar aspect of the respective digit. Yet, available tools to monitor the recovery of tactile sense have been criticized for their lack of validity. However, the precise quantification of AA dynamics by three-dimensional (3-D) imaging could serve as an accurate surrogate to monitor recovery following digital nerve repair. For validation, AAs were marked on digits of healthy volunteers to simulate the AA of an impaired cutaneous innervation. Three dimensional models were composed from raw images that had been acquired with a 3-D camera (Vectra H2) to precisely quantify relative AA for each digit (3-D models, n= 80). Operator properties varied regarding individual experience in 3-D imaging and image processing. Additionally, the concept was applied in a clinical case study. Images taken by experienced photographers were rated better quality (p< 0.001) and needed less processing time (p= 0.020). Quantification of the relative AA was neither altered significantly by experience levels of the photographer (p= 0.425) nor the image assembler (p= 0.749). The proposed concept allows precise and reliable surface quantification of digits and can be performed consistently without relevant distortion by lack of examiner experience. Routine 3-D imaging of the AA has the great potential to provide visual evidence of various returning states of sensation and to convert sensory nerve recovery into a metric variable with high responsiveness to temporal progress. KW - 3D imaging Y1 - 2023 U6 - https://doi.org/10.1097/PRS.0000000000010456 SN - 1529-4242 VL - 152 IS - 4 SP - 670e EP - 674e PB - Lippincott Williams & Wilkins CY - Philadelphia, Pa. ER - TY - JOUR A1 - Philipp, Alois A1 - de Somer, Filip A1 - Foltan, Maik A1 - Bredthauer, Andre A1 - Krenkel, Lars A1 - Zeman, Florian A1 - Lehle, Karla T1 - Life span of different extracorporeal membrane systems for severe respiratory failure in the clinical practice JF - PLOS ONE N2 - Over the past decade, veno-venous extracorporeal membrane oxygenation (vvECMO) has been increasingly utilized in respiratory failure in patients. This study presents our institution´s experience focusing on the life span of ECMO systems reflecting the performance of a particular system. A retrospective review of our ECMO database identified 461 adult patients undergoing vvECMO (2010-2017). Patients that required more than one system and survived the first exchange >24 hours (n = 139) were included. Life span until the first exchange and exchange criteria were analyzed for all systems (PLS, Cardiohelp HLS-set, both Maquet Cardiopulmonary, Rastatt, Germany; Deltastream/Hilite7000LT, iLA-activve, Xenios/NovaLung, Heilbronn, Germany; ECC.O5, LivaNova, Mirandola, Italy). At our ECMO center, the frequency of a system exchange was 30%. The median (IQR) life span was 9 (6-12) days. There was no difference regarding the different systems (p = 0.145 and p = 0.108, respectively). However, the Deltastream systems were exchanged more frequently due to elective technical complications (e. g. worsened gas transfer, development of coagulation disorder, increased bleedings complications) compared to the other exchanged systems (p = 0.013). In summary, the used ECMO systems are safe and effective for acute respiratory failure. There is no evidence for the usage of a specific system. Only the increased predictability of an imminent exchange preferred the usage of a Deltastream system. However, the decision to use a particular system should not depend solely on the possible criteria for an exchange. KW - Equipment Failure Analysis/statistics & numerical data KW - Extracorporeal Membrane Oxygenation/instrumentation KW - Membrane/classification/standards/statistics & numerical data KW - Primary Health Care/statistics & numerical data KW - Respiratory Distress Syndrome/therapy KW - Retrospective Studies KW - Severity of Illness Index KW - Time factors KW - MULTIDETECTOR COMPUTED-TOMOGRAPHY KW - THROMBOTIC DEPOSITS KW - ECMO SYSTEMS KW - Flow KW - OXYGENATION Y1 - 2018 U6 - https://doi.org/10.1371/journal.pone.0198392 VL - 13 IS - 6 SP - 1 EP - 10 PB - PLOS ER -