TY - JOUR A1 - Broser, Christian A1 - Falter, Thomas A1 - Ławrowski, Robert Damian A1 - Altenbuchner, Amelie A1 - Vögele, Daniel A1 - Koss, Claus A1 - Schlampp, Matthias A1 - Dunnweber, Jan A1 - Steffens, Oliver A1 - Heckner, Markus A1 - Jaritz, Sabine A1 - Schiegl, Thomas A1 - Corsten, Sabine A1 - Lauer, Norina A1 - Guertler, Katherine A1 - Koenig, Eric A1 - Haug, Sonja A1 - Huber, Dominik A1 - Birkenmaier, Clemens A1 - Krenkel, Lars A1 - Wagner, Thomas A1 - Justus, Xenia A1 - Saßmannshausen, Sean Patrick A1 - Kleine, Nadine A1 - Weber, Karsten A1 - Braun, Carina N. A1 - Giacoppo, Giuliano A1 - Heinrich, Michael A1 - Just, Tobias A1 - Schreck, Thomas A1 - Schnabl, Andreas A1 - Gilmore, Amador Téran A1 - Roeslin, Samuel A1 - Schmid, Sandra A1 - Wellnitz, Felix A1 - Malz, Sebastian A1 - Maurial, Andreas A1 - Hauser, Florian A1 - Mottok, Jürgen A1 - Klettke, Meike A1 - Scherzinger, Stefanie A1 - Störl, Uta A1 - Heckner, Markus A1 - Bazo, Alexander A1 - Wolff, Christian A1 - Kopper, Andreas A1 - Westner, Markus A1 - Pongratz, Christian A1 - Ehrlich, Ingo A1 - Briem, Ulrich A1 - Hederer, Sebastian A1 - Wagner, Marcus A1 - Schillinger, Moritz A1 - Görlach, Julien A1 - Hierl, Stefan A1 - Siegl, Marco A1 - Langer, Christoph A1 - Hausladen, Matthias A1 - Schreiner, Rupert A1 - Haslbeck, Matthias A1 - Kreuzer, Reinhard A1 - Brückl, Oliver A1 - Dawoud, Belal A1 - Rabl, Hans-Peter A1 - Gamisch, Bernd A1 - Schmidt, Ottfried A1 - Heberl, Michael A1 - Gänsbauer, Bianca A1 - Bick, Werner A1 - Ellermeier, Andreas A1 - Monkman, Gareth J. A1 - Prem, Nina A1 - Sindersberger, Dirk A1 - Tschurtschenthaler, Karl A1 - Aurbach, Maximilian A1 - Dendorfer, Sebastian A1 - Betz, Michael A. A1 - Szecsey, Tamara A1 - Mauerer, Wolfgang A1 - Murr, Florian ED - Baier, Wolfgang T1 - Forschung 2018 T3 - Forschungsberichte der OTH Regensburg - 2018 KW - Forschung KW - Forschungsbericht Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-13826 SN - 978-3-9818209-5-9 CY - Regensburg ER - TY - CHAP A1 - Murr, Florian A1 - Mauerer, Wolfgang T1 - McFSM: Globally Taming Complex Systems T2 - 2017 IEEE/ACM 3rd International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS), 21-21 May 2017, Buenos Aires, Argentina N2 - Industrial computing devices, in particular cyber-physical, real-time and safety-critical systems, focus on reacting to external events and the need to cooperate with other devices to create a functional system. They are often implemented with languages that focus on a simple, local description of how a component reacts to external input data and stimuli. Despite the trend in modern software architectures to structure systems into largely independent components, the remaining interdependencies still create rich behavioural dynamics even for small systems. Standard and industrial programming approaches do usually not model or extensively describe the global properties of an entire system. Although a large number of approaches to solve this dilemma have been suggested, it remains a hard and error-prone task to implement systems with complex interdependencies correctly. We introduce multiple coupled finite state machines (McFSMs), a novel mechanism that allows us to model and manage such interdependencies. It is based on a consistent, well-structured and simple global description. A sound theoretical foundation is provided, and associated tools allow us to generate efficient low-level code in various programming languages using model-driven techniques. We also present a domain specific language to express McFSMs and their connections to other systems, to model their dynamic behaviour, and to investigate their efficiency and correctness at compile-time. Y1 - 2017 U6 - https://doi.org/10.1109/SEsCPS.2017.7 SP - 26 EP - 29 PB - IEEE ER - TY - INPR A1 - Murr, Florian A1 - Mauerer, Wolfgang T1 - McFSM: Near Turing-Complete Finite-State Based Programming N2 - Finite state machines (FSMs) are an appealing mechanism for simple practical computations: They lend themselves to very effcient and deterministic implementation, are easy to understand, and allow for formally proving many properties of interest. Unfortunately, their computational power is deemed insuffcient for many tasks, and their usefulness has been further hampered by the state space explosion problem and other issues when naïvely trying to scale them to sizes large enough for many real–life applications. This paper expounds on theory and implementation of multiple coupled fnite state machines (McFSMs), a novel mechanism that combines benefits of FSMs with near Turing-complete, practical computing power, and that was designed from the ground up to support static analysis and reasoning. We develop an elaborate category–theoretical foundation based on non–deterministic Mealy machines, which gives a suitable algebraic description for novel ways of blending di#erent computing models. Our experience is based on a domain specific language and an integrated development environment that can compile McFSM models to multiple target languages, applying it to use-cases based on industrial scenarios. We discuss properties and advantages of McFSMs, explain how the mechanism can interact with real–world systems and existing code without sacrificing provability, determinism or performance. We discuss how McFSMs can be used to replace and improve on commonly employed programming patterns, and show how their effcient handling of large state spaces enables them to be used as core building blocks for distributed, safety critical, and real–time systems of industrial complexity, which contributes to the longdesired goal of providing executable specifications. KW - Finite state machines KW - Mealy machines KW - automata KW - coupled machines KW - executable specifcation KW - category theory KW - generative approaches KW - formal models KW - static analysis Y1 - 2021 UR - https://www.lfdr.de/Publications/2021/MuMa21.pdf ER -