TY - CHAP A1 - Prommesberger, Christian A1 - Langer, Christoph A1 - Ławrowski, Robert Damian A1 - Muller, F. A1 - Dams, Florian A1 - Schreiner, Rupert A1 - Serbun, Pavel A1 - Müller, Günter T1 - Comparison of integral and local field-emission properties of Mo-coated p-Si tip arrays T2 - 2015 28th International Vacuum Nanoelectronics Conference (IVNC), 13-17 July 2015, Guangzhou, China N2 - Silicon tip arrays were fabricated by means of reactive ion etching followed by oxidation for final sharpening and molybdenum thin film coating. The field-emission (FE) properties of these Mo-coated p-Si tip arrays were systemically investigated by different measurement techniques. Integral measurements in diode configuration yielded a turn-on field (for 1 nA) of 22 V/μm and nearly stable FE currents up to 6.6 μA at 38 V/μm. The effective field enhancements factor extracted from the FN plots is about 180. Detailed investigations of these FE arrays were also performed by means of field emission scanning microscopy combined with electron microscopy. A rather limited efficiency of the tips (50% at 1500 V) and FE homogeneity (180 nA at 700 V) might be correlated with the varying morphology of the tips and the presence of oxides. Local I-V measurements of selected single tips revealed both activation and deactivation effects, which finally resulted in nearly reproducible I-V curves. Current stability measurements at a constant voltage showed rather large fluctuations (0.1-1 μA) of the FE current, which could be reduced up to 1.7% by using of a PID-regulated voltage source. SEM images showed unchanged tip shape after the current processing. KW - CATHODES KW - Coatings KW - Current measurement KW - field emission KW - Iron KW - Mo-coated KW - p-Si tip KW - Scanning electron microscopy KW - silicon KW - tip arrays KW - Vacuum technology Y1 - 2015 U6 - https://doi.org/10.1109/IVNC.2015.7225579 SP - 192 EP - 193 PB - IEEE ER - TY - CHAP A1 - Langer, Christoph A1 - Prommesberger, Christian A1 - Ławrowski, Robert Damian A1 - Müller, F. A1 - Schreiner, Rupert A1 - Serbun, Pavel A1 - Müller, Günter T1 - Enhanced field emission from p-doped black silicon on pillar structures T2 - 2015 28th International Vacuum Nanoelectronics Conference (IVNC), 13-17 July 2015, Guangzhou, China N2 - Aligned square arrays of black silicon (b-Si) on top of pillars were fabricated on p-type silicon substrate by a deep-etching step combined with a b-Si process. Two 10×10 arrays with pillar heights of 8 μm and 20 μm and one b-Si reference sample without pillars were investigated. Integral field emission (FE) measurements of the arrays yielded rather low onset-fields between 6.4 V/μm and 13.5 V/μm and field enhancement factors between 430 and 800. The I-V curves showed typical Fowler-Nordheim behavior for low fields, whereas a saturation region was observed at higher fields. The maximum integral current in the saturation region was 8 μA at a field of 20 V/μm. The stability of the emission current was investigated over 3 hours and revealed moderate fluctuations of ± 8% in the saturation region. Voltage scans showed well-aligned FE from nearly all pillars. KW - black silicon KW - CATHODES KW - Current measurement KW - Etching KW - FABRICATION KW - field emission KW - field emitter array KW - Iron KW - silicon KW - Vacuum technology Y1 - 2015 U6 - https://doi.org/10.1109/IVNC.2015.7225547 SP - 104 EP - 105 PB - IEEE ER - TY - CHAP A1 - Schreiner, Rupert A1 - Langer, Christoph A1 - Prommesberger, Christian A1 - Ławrowski, Robert Damian A1 - Dams, Florian A1 - Bachmann, Michael A1 - Düsberg, F. A1 - Hofmann, M. A1 - Pahlke, A. A1 - Serbun, Pavel A1 - Mingels, S. A1 - Müller, Günter T1 - Semiconductor field emission electron sources using a modular system concept for application in sensors and x-ray-sources T2 - 2015 28th International Vacuum Nanoelectronics Conference (IVNC), 13-17 July 2015, Guangzhou, China N2 - Semiconductor field emitters are suitable candidates for applications, which require a very stable field emission (FE) current and a high emission uniformity over the entire emission area. By using different materials and geometries, we are able to vary the FE characteristics within a wide range. Each specific application requires its own optimized design for the cathode as well as for the other parts of the FE electron source. To meet as many of these requirements as possible while using only a limited number of different prefabricated components, we established a modular system concept for our FE electron source. This allows the implementation of almost every cathode material. For first characterizations, we used gated p-type Si cathodes with 16 tips. We obtained stable FE currents of 0.4 μA for a grid-potential of 400 V and a gate potential of 100 V. Almost 100% of the electrons are emitted towards the grid-electrode. Parasitic leakage paths, as well as the electron emission towards the gate-electrode can be neglected. Approximately 10% of the electrons are transmitted through the grid and reach the external anode. This is in good agreement with the optical transmission through the grid-mesh. KW - Anodes KW - CATHODES KW - electron sources KW - GEOMETRY KW - Iron KW - Logic gates KW - semiconductor field emission KW - silicon Y1 - 2015 U6 - https://doi.org/10.1109/IVNC.2015.7225572 SP - 178 EP - 179 PB - IEEE ER -