TY - CHAP A1 - Bogomolov, Maxim A1 - Kral, Christian A1 - Haumer, Anton A1 - Lomonova, Elena T1 - Modeling of permanent magnet synchronous machine with fractional slot windings T2 - Proceedings IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society ; Ecole de Technologie Superieure de Montreal, Universite du Quebec Montreal, Canada 25 - 28 October, 2012 N2 - This paper focuses on simulation of permanent magnet synchronous machine (PMSM) with fractional-slot windings (FSW) in Modelica. Modeling of the electrical machines with object-oriented approach is shortly described, and a new Modelica library for simulation of electrical machines is introduced. The results of simulation of PMSMs with fractional slot windings are presented and explained. Special attention is paid to the higher harmonics and subharmonics produced by the winding and their influence on machine operation. KW - Concentrated KW - fractional slot KW - harmonics KW - Modelica KW - permanent magnet KW - subharmonics KW - synchronous machines KW - Torque KW - windings Y1 - 2012 SN - 978-1-4673-2421-2 SN - 978-1-4673-2419-9 SN - 978-1-4673-2420-5 U6 - https://doi.org/10.1109/IECON.2012.6388912 SN - 1553-572X SP - 1894 EP - 1899 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Kral, Christian A1 - Haumer, Anton A1 - Bogomolov, Maxim A1 - Lomonova, Elena T1 - Harmonic wave model of a permanent magnet synchronous machine for modeling partial demagnetization under short circuit conditions T2 - 2012 XXth International Conference on Electrical Machines (ICEM 2012) ; Marseille, France, 2 - 5 September 2012 N2 - This paper proposes a multi domain physical model of permanent magnet synchronous machines, considering electrical, magnetic, thermal and mechanical effects. For each component of the model, the main wave as well as lower and higher harmonic wave components of the magnetic flux and the magnetic potential difference may be considered. The permanent magnets are modeled as discrete azimuthal segments in order to consider possible partial demagnetization effects. For each magnet segment a linearized temperature dependent B-H curve is considered. The main advantage of the presented model is that time transient operational behavior of a permanent magnet synchronous machine can be considered under various electrical, magnetic, thermal and mechanical conditions. The electromagnetic condition of surface magnet machine is compared with finite element analysis. KW - demagnetization KW - harmonic analysis KW - magnetic fields KW - magnetic flux KW - magnetic potential difference KW - permanent magnet synchronous machine KW - reluctance KW - segmentation KW - temperature Y1 - 2012 SN - 978-1-4673-0142-8 U6 - https://doi.org/10.1109/ICElMach.2012.6349880 SP - 295 EP - 301 PB - IEEE CY - Piscataway, NJ ER -