TY - RPRT A1 - Siegl, Marco A1 - Ehrlich, Ingo A1 - Siegl, Marco A1 - Ehrlich, Ingo ED - Baier, Wolfgang T1 - Einfluss von Prozessparametern auf die Schmelzimprägnierung zur Herstellung von faserverstärkten Thermoplasten T2 - Forschung 2018 / Ostbayerische Technische Hochschule Regensburg N2 - Die Erforschung von faserverstärkten Kunststoffen (FVK) mit thermoplastischer Matrix ist aufgrund der Schweißeignung als Verbindungstechnologie, der thermischen Umformbarkeit, der Recyclebarkeit sowie der verkürzten Prozesszeiten im Vergleich zu den vorwiegend eingesetzten faserverstärkten Duroplasten erstrebenswert. Die Wechselwirkung zwischen den physikalischen, mechanischen und geometrischen Parametern erhöht den Komplexitätsgrad des Herstellungsprozesses. Ziel ist daher die Entwicklung einer Imprägniertechnik, die eine Fasertränkung mittels eines Thermoplastschmelzbades ermöglicht. Y1 - 2018 UR - https://doi.org/10.35096/othr/pub-1382 SP - 72 EP - 73 PB - VMK Verlag für Marketing & Kommunikation GmbH & Co. KG ER - TY - PAT A1 - Olbrich, Florian A1 - Pongratz, Christian A1 - Bierl, Rudolf A1 - Ehrlich, Ingo T1 - Method and System for Evaluating a Structural Integrity of an Aerial Vehicle T2 - Europäisches Patentblatt (09.12.2020) zur Anmeldung: OTH Regensburg, Anmeldenummer: 19179054.2, Patentnummer 1001/3748327, Veröffentlichungsnummer: 3 748 327 Y1 - 2020 SP - 395 EP - 396 ER - TY - JOUR A1 - Valentino, Piergiorgio A1 - Sgambitterra, Emanuele A1 - Furgiuele, Franco A1 - Romano, Marco A1 - Ehrlich, Ingo A1 - Gebbeken, Norbert T1 - Mechanical characterization of basalt woven fabric composites BT - numerical and experimental investigation JF - Frattura ed Integrità Strutturale (Fracture and Structural Integrity) N2 - Basalt fabric composite, with different twill wave reinforcements, i.e. twill 2/2 and twill 1/3, have been studied in this work by means of experimental tests and numerical finite element (FE) simulations. As fabric reinforcements show repeating undulations of warp and fill yarn, simple mixtures law cannot be applied. As a consequence, the mesoscopic scale, lying between the microscopic and the macroscopic one, has to be taken into account to mechanically characterize a fabric reinforced composite. The aim of this work is to evaluate the stiffness of a fabric reinforced composite in warp and fill direction. In particular a numerical FE model, assuming elliptical sections and sinusoidal shape of the yarns, has been implemented and experimental tests have been carried out in order to validate the proposed model. Finally, the strength and the failure modes le orientation, have been experimentally investigated. Y1 - 2014 U6 - https://doi.org/10.3221/IGF-ESIS.28.01 VL - 8 IS - 28 SP - 1 EP - 11 ER - TY - CHAP A1 - Schmid, Vinzent A1 - Bruland, Matthias A1 - Ehrlich, Ingo A1 - Kastenmeier, Andreas ED - Rahman, Jamal ED - Heinze, Ronald T1 - Entwicklung und Regelung eines hydraulischen Biegeprüfstands T2 - Virtuelle Instrumente in der Praxis 2015 - Begleitband zum 20. VIP-Kongress. Y1 - 2015 PB - VDE-Verlag CY - Berlin/Offenbach ER - TY - JOUR A1 - Romano, Marco A1 - Eisenried, Michael A1 - Jungbauer, Bastian A1 - Ehrlich, Ingo A1 - Gebbeken, Norbert T1 - Influence of parameters of the production process on the material quality of unidirectionally reinforced prepregs JF - Journal of Achievements in Materials and Manufacturing Engineering (JAMME) N2 - Purpose: A prepreg production device in laboratory scale is used to develop the production process of unidirectionally reinforced prepregs. Design/methodology/approach: The aim of the prepreg production device is to impregnate different types of reinforcement fibers with an arbitrarily selectable thermoset matrix system that completely satisfies the requirements for autoclave processing. As the prepreg production device is designed and built up modularly every module corresponds one step in the process. Findings: To identify the parameters of the production process and investigate its sensitivity on the material quality of both the prepreg as an uncured semi-finished product and the composite as the cured material experimental investigations regarding the resin flow, fiber volume content, mass per unit area and void content are carried out. Overall four material combinations have been investigated, where in each case the selected impregnation temperature and the width of the impregnation gap has been reproducibly varied in selected steps. Research limitations/implications: The experimental characterization of the prepregs and of the composite material is carried out according to German standards. Y1 - 2015 UR - http://jamme.acmsse.h2.pl/vol68_1/6815.pdf VL - 68 IS - 1 SP - 32 EP - 44 ER - TY - JOUR A1 - Romano, Marco A1 - Ehrlich, Ingo A1 - Gebbeken, Norbert T1 - Parametric characterization of a mesomechanic kinematic caused by ondulation in fabric reinforced composites: analytical and numerical investigations JF - Frattura ed Integrità Strutturale (Fracture and Structural Integrity) N2 - A parametric characterization of a mesomechanic kinematic caused by ondulation in fabric reinforced composites is investigated by analytical and numerical investigations. Due to the definition of plain representative sequences of balanced plain-weave fabric reinforced single layers based on sines the variable geometric parameters are the amplitude and the length of the ondulation. The mesomechanic kinematic can be observed in both the analytic model and the FE-analyses. The analytic model yields hyperbolic correlations due to the strongly simplifying presumptions that neglect elasticity. In contrast the FE-analyses yield linear correlations in much smaller amounts due to the consideration of elastic parts, yet distinctly. Y1 - 2017 U6 - https://doi.org/10.3221/IGF-ESIS.39.22 VL - 11 IS - 39 SP - 226 EP - 247 ER - TY - JOUR A1 - Siegl, Marco A1 - Ehrlich, Ingo T1 - Transformation of the Mechanical Properties of Fiber-Reinforced Plastic Tubes from the Cartesian Coordinate System into the Cylindrical Coordinate System for the Application of Bending Models JF - Athens Journal of Technology & Engineering N2 - Fiber-reinforced plastic (FRP) tubes are used in many different industries, such as electrical engineering and pipeline construction. The tubes are frequently subjected to bending loads, depending on the application. In order that the dimensioning of the tubes can be ensured, analytical bending models are used to calculate the resulting stresses, strains and displacements in the individual layers of the laminate. This enables the making of a statement about the failure of the fiber-reinforced tube by choosing an appropriate failure criterion. For the use of these bending models, it is necessary to understand the respective underlying theory. The theory provides the basis for the mathematical description of the mechanical properties for a single-layered tube and using the relationships between the stresses and strains that occur in the Cylindrical coordinate system for this calculation step. For this reason, a redefinition of the compliance matrix from the transformation about the winding angle to the Cylindrical coordinate system and a modification of the stress and strain vectors is necessary, because the defined Cartesian coordinate system of the model cannot be used for wounded FRP tubes. The transformation causes an exchange of entries in the compliance matrix, which remain in the correct relationship between the particular stress and strains. This step is not specified and may lead to incorrect results due to the incorrect entry of compliances. The present publication refers to sketch on this issue and represent a simplification of the changeover to the level required by the bending models notation of vectors in the form of a permutation. In addition, a new name for the pre-acquisition of the redefined compliances is given to prevent confusion when entering the material law of a bending model. Finally, the permuted and redefined compliances are proved in an example to determine their accuracy. KW - Bending model KW - Cylindrical coordinate system KW - Fiber-reinforced plastic tubes KW - Permutation of the compliances KW - Transformation of the compliances Y1 - 2017 UR - https://www.athensjournals.gr/technology/2017-4-1-4-Siegl.pdf VL - 4 IS - 1 SP - 47 EP - 62 ER - TY - CHAP A1 - Putzer, Michael A1 - Penzkofer, Rainer A1 - Ehrlich, Ingo A1 - Rasmussen, John A1 - Gebbeken, Norbert A1 - Dendorfer, Sebastian T1 - Musculoskeletal simulations to investigate the influence of vertebral geometrical parameters on lumbar spine loading T2 - 7th World Congress of Biomechanics, Boston, United States, 04/07/14 -11/07/14 Y1 - 2014 ER - TY - GEN A1 - Judenmann, Anna A1 - Pongratz, Christian A1 - Ehrlich, Ingo A1 - Höfer, Philipp A1 - Holtmannspötter, Jens T1 - Additive Fertigung von endlosfaserverstärkten Kunststoffstrukturen T2 - Münchner Leichtbauseminar 2022, 26. October 2022, 16. November 2022, 30 November 2022, Munich/Neubiberg/Garching N2 - Additive Fertigung hat sich in zahlreichen industriellen Anwendungen etabliert und bildet eine wichtige Schlüsseltechnologie. Im Gegensatz zu metallischen Werkstoffen, haben additiv gefertigte Bauteile aus Kunststoffen geringere Festigkeit und Steifigkeit, sodass sich ihre Verwendung als lasttragende Strukturen schwierig gestaltet. Insbesondere der Einsatz von endlosen Verstärkungsfasern kann die mechanischen Eigenschaften additiv gefertigter Strukturen signifikant verbessern und die Fertigung hochbelastbarer Faserverbundstrukturen im 3D-Druckverfahren ermöglichen. Daher gilt es aktuell notwendige Anlagen und Prozessketten für den Fertigungsprozess aber auch Vorgehensweisen für die belastungsoptimierte Auslegung der Faserverläufe innerhalb des Bauteils zu entwickeln, um so das Themengebiet „Endlosfaserverstärkter 3D-Druck“ weiter voranzutreiben. Für mehr räumliche Freiheit bei der Positionierung der Druckbahnen können industrieroboterbasierte Systeme eingesetzt werden, um so das Potenzial gerichteter Bauweise von Faserverbundstrukturen auch im additiven Fertigungsprozess vollumfänglich ausschöpfen zu können. Dabei ermöglicht ihr Einsatz auch eine räumliche Ablage der Faserverstärkung, wobei für die Materialablage ein geeigneter 3D-Druckkopf erforderlich ist. Für die Implementierung der Faserverstärkung ist zudem eine dem Lastfall entsprechende Auslegung des Bauteils sowie die Ermittlung einer sinnvollen Faserpositionierung innerhalb des Bauteils erforderlich, wobei unterschiedliche Variablen aus den Bereichen Material, Struktur und Fertigungsprozess berücksichtigt werden müssen. Im Rahmen des Vortrages werden die Herausforderungen der Technologieentwicklung des endlosfaserverstärkten 3D-Drucks aufgegriffen sowie auf eine belastungsorientierte Faserpositionierung näher eingegangen. Aktuelle Erkenntnisse werden diskutiert sowie eine Entwurfsmethodik für die Prozesspfadgenerierung vorgeschlagen. KW - additive manufacturing KW - continuous fiber KW - composites KW - toolpath Y1 - 2022 ER - TY - JOUR A1 - Bode, J. A1 - Ehrlich, Ingo T1 - Entwicklung eines finiten Elements für Sandwichanwendungen JF - Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), Journal of Applied Mathematics and Mechanics Y1 - 1997 VL - 77 IS - 1 SP - 41 EP - 42 ER - TY - JOUR A1 - Putzer, Michael A1 - Ehrlich, Ingo A1 - Rasmussen, John A1 - Gebbeken, Norbert A1 - Dendorfer, Sebastian T1 - Sensitivity of lumbar spine loading to anatomical parameters JF - Journal of Biomechanics N2 - Musculoskeletal simulations of lumbar spine loading rely on a geometrical representation of the anatomy. However, this data has an inherent inaccuracy. This study evaluates the influence of defined geometrical parameters on lumbar spine loading utilising five parametrised musculoskeletal lumbar spine models for four different postures. The influence of the dimensions of vertebral body, disc, posterior parts of the vertebrae as well as the curvature of the lumbar spine was studied. Additionally, simulations with combinations of selected parameters were conducted. Changes in L4/L5 resultant joint force were used as outcome variable. Variations of the vertebral body height, disc height, transverse process width and the curvature of the lumbar spine were the most influential. These parameters can be easily acquired from X-rays and should be used to morph a musculoskeletal lumbar spine model for subject-specific approaches with respect to bone geometry. Furthermore, the model was very sensitive to uncommon configurations and therefore, it is advised that stiffness properties of discs and ligaments should be individualised. KW - Musculoskeletal simulation KW - Lumbar spine KW - Parameter study KW - Vertebra KW - Wirbelsäule KW - Belastung KW - Simulation Y1 - 2015 U6 - https://doi.org/10.1016/j.jbiomech.2015.11.003 VL - 49 IS - 6 SP - 953 EP - 958 PB - Elsevier Science ER - TY - JOUR A1 - Romano, Marco A1 - Hoinkes, Carl J. J. A1 - Ehrlich, Ingo A1 - Höcherl, Johannes A1 - Gebbeken, Norbert T1 - Experimental investigation of energy dissipation properties of fibre reinforced plastics with hybrid layups under high-velocity impact loads JF - Journal of Achievements in Materials and Manufacturing Engineering (JAMME) N2 - Purpose: The present work deals with the experimental investigation concerning the energy dissipation capacity of different kinds of reinforcement fibres in monolithic and hybrid layups under high velocity impact loads. The investigated kinds of fibres are carbon, glass and basalt. Design/methodology/approach: The test panels have been impregnated with thermoset resin. Curing was done by autoclave processing. In order to obtain comparable fibre volume contents of approx. 60 % in the different layups (monolithic and hybrid without and with separating layer), curing cycles adapted to the type of layup have been identified. The resulting fibre volume content of the test panels has been determined both by weighing and experimentally by chemical extraction and calcination. The impact load was applied by an instrumented experimental setup. Thereby both commercially available bullets and bearing balls accelerated with weighted propellant in a sabot have been used as impactors. The measured values are the velocities of the bearing balls as the impactor before and after penetration of the test panels. Findings: In both cases the results show the energy dissipation capacity of each single kind of fibre in case of the monolithic layups as well as the enhanced properties of the hybrid stacked layups without and with the separating layer as a core material. Typical failure modes on the impact surface and on the outlet areas are identified. Research limitations/implications: The influence of the respective kind of impactors, namely bullets and bearing balls, on the evaluated results is identified. Thereby the bearing balls exhibited a higher degree of reproducibility due to several reasons. Originality/value: Fibre reinforced plastics with hybrid stacking sequences can be used as load-bearing structures and at the same time as safety structures for passengers in automotive or aerospace applications. Moreover, with the hybrid stacked composites lightweight concepts can efficiently be realized regarding energy saving issues. Y1 - 2014 VL - 64 IS - 1 SP - 14 EP - 20 ER - TY - CHAP A1 - Dinnebier, Heinrich A1 - Ehrlich, Ingo ED - Meran, C. T1 - The Effects of Severe Temperature Changes and High Humidity on Porous CFRP T2 - Proceedings of the 15th International Materials Symposium (IMSP´2014), Pamukkale University (Denizli, Turkey), 15./17. October 2014 N2 - Purpose: A route to manufacture porous carbon fiber reinforced plastic (CFRP) for study purposes is described. Design/methodology/approach: The porous CFRP is characterized using standard techniques such as matrix digestion as well as the more sophisticated method of high resolution Microfocus X-Ray Tomography (μCT). A comparison of the results of those methods is presented. The mass gains of specimens with a wide range of porosity have been measured both in constant humidity and in alternating environments. Findings: It could be shown that severe temperature changes can temporarily increase the moisture content of porous CFRP. However, after the return to a constant environment, the moisture content returns back to saturation levels. Furthermore, it could be shown by X-Ray Tomography that even under severe climatic conditions no permanent liquid water condensates inside the pores. Research limitations/implications: Using Microfocus Computed Tomography it could be shown that even after nearly a year under hot-wet conditions and more than 150 severe temperature cycles there is no liquid water detectable inside the pores. Originality/value: In this paper the effects of severe temperature changes and high humidity on porous CFRP. Y1 - 2014 UR - http://jamme.acmsse.h2.pl/vol67_1/6712.pdf SP - 433 EP - 440 ER - TY - JOUR A1 - Romano, Marco A1 - Ehrlich, Ingo A1 - Gebbeken, Norbert T1 - Parametric characterization of a mesomechanic kinematic in plain and twill weave 2/2 reinforced composites by FE-calculations JF - Archives of Materials Science and Engineering (ArchivesMSE) N2 - Purpose: A parametric characterization of a mesomechanic kinematic caused by ondulation in fabric reinforced composites is investigated by numerical investigations. Design/methodology/approach: Due to the definition of plain representative sequences of balanced plain-weave and twill-weave 2/2 fabric reinforced single layers based on sines the variable geometric parameters are the amplitude and the length of the ondulation. Findings: The mesomechanic kinematic can be observed in the FE analyses for both kinds of fabric constructions. Research limitations/implications: The FE analyses consider elasticity and contraction due to Poisson effects, respectively, of the model under selected longitudinal strains. Practical implications: The results are evaluated at relevant positions on the centre-line of the ondulated warp-yarn of the plain representative model. A direct and linear coupling in case of the transversal kinematic behaviour, and thereby a corresponding definite reduction of the evaluated longitudinal strains in terms of the difference of the applied and determined longitudinal strains is identified. Originality/value: Both characteristic purely kinematic reactions due to geometric constraints directly depend on the introduced degree of ondulation. This non-dimensional parameter relates amplitude and length of one complete ondulation, and thus represents the intensity of the ondulation of the respective fabric construction. Y1 - 2019 U6 - https://doi.org/10.5604/01.3001.0013.2869 SN - 1897-2764 VL - 97 IS - 1-2 SP - 20 EP - 38 PB - Index Copernicus ER - TY - JOUR A1 - Niedernhuber, Michael A1 - Holtmannspötter, Jens A1 - Ehrlich, Ingo T1 - Fiber-oriented repair geometries for composite materials JF - Composites, Part B N2 - In this paper, the idea of fiber-oriented repair geometries for carbon fiber reinforced plastics (CFRP) is investigated. It considers the differing mechanical properties of unidirectional fiber reinforced material by excluding overlapping regions perpendicular to the fiber direction of the particular layer. A mechanical and numerical comparison of tensile strength of stepped joints with continuous step lengths per ply and stepped joints with reduced step lengths in plies with fiber orientation differing from load direction is performed. Finite element simulations show similar shear stresses. Mechanical tests of CFRP laminates with stepped joints show no significant deviation in tensile strength, in spite of a joint length reduction of nearly 40%. This leads to the possibility of a significant reduction of repair area. Y1 - 2016 U6 - https://doi.org/10.1016/j.compositesb.2016.03.027 VL - 94 SP - 327 EP - 337 ER - TY - RPRT A1 - Pongratz, Christian A1 - Ehrlich, Ingo ED - Baier, Wolfgang T1 - High-End-Strukturen für den Leichtbau – mit faserverstärktem 3D-Druck T2 - Forschung 2018 / Ostbayerische Technische Hochschule Regensburg Y1 - 2018 UR - https://doi.org/10.35096/othr/pub-1382 SN - 978-3-9818209-4-2 SP - 64 EP - 65 ER - TY - CHAP A1 - Valentino, Piergiorgio A1 - Romano, Marco A1 - Ehrlich, Ingo A1 - Furgiuele, Franco A1 - Gebbeken, Norbert ED - Iacovello, F. ED - Risitano, G. ED - Susmel, L. T1 - Mechanical characterization of basalt fibre reinforced plastic with different fabric reinforcements – Tensile tests and FE-calculations with representative volume elements (RVEs) T2 - Acta Fracturae - XXll Convegno Nazionale IGF (Italiano Gruppo Frattura) N2 - This paper describes the results of tensile tests and finite element (FE) calculations with representative volume elements (RVEs) of basalt fibre reinforced plastic with two different types of fabric reinforcements. As fabric reinforcements show repeating ondulations of warp and fill yarn, simple mixtures laws reach their limits. That is the reason why the mesoscopic dimension, lying between the microscopic and the macroscopic dimension, has to be taken into account when a mechanical characterization of fabric reinforced composites is carried out. The aim of this work is to determine the stiffness of a fabric reinforced composite in warp and fill direction with numerical investigations. The simulations are based on FE-calculation with two different RVEs. The tensile tests and the FE-calculations have been carried out for two different types of basalt fabrics, namely twill 2/2 and twill 1/3. The comparison between the experimental data and the results of the FE-calculations are provided in order to support the validity of the proposed model. Y1 - 2013 UR - http://www.gruppofrattura.it/pdf/convegni/22/IGFXXII/index.html#/242/ ER - TY - RPRT A1 - Valentino, Piergiorgio A1 - Romano, Marco A1 - Ehrlich, Ingo A1 - Furgiuele, Franco A1 - Gebbeken, Norbert T1 - Mechanische Charakterisierung von basaltfaser-verstärkten Kunststoffen mit Gewebeverstärkung – Numerische und experimentelle Untersuchungen T2 - Forschungsbericht 2013 Y1 - 2014 UR - https://doi.org/10.35096/othr/pub-799 PB - inixmedia GmbH Marketing & Medienberatung ER - TY - CHAP A1 - Ottawa, Patrycja A1 - Romano, Marco A1 - Ehrlich, Ingo A1 - Wagner, Marcus A1 - Gebbeken, Norbert T1 - The influence of ondulation in fabric reinforced composites on dynamic properties in a mesoscopic scale T2 - 11. LS-DYNA Forum, 9. - 10. Oktober 2012, Ulm N2 - Structural mechanic properties of fiber reinforced plastics depend on the single components’ properties, namely matrix and fiber [5]. Simple micromechanic homogenization theories reach a limit when a laminate consists of fabric reinforced layers instead of unidirectional layers. The ondulations of warp and fill yarn caused by the textile semi-finished product are the reason why the mesoscopic scale, which is in between the microscopic and the macroscopic scale, has to be taken into account when mechanically characterizing fabric reinforced composites [3]. In this scale a mesomechanic kinematic can be derived analytically. Especially, when considering free damped vibrations of structures the repeated acting of the kinematic correlation significantly affects the damping behaviour to higher values compared to theoretically predicted damping ratios. The model is investigated using Finite-Element-Analyses and basically validated experimentally. Y1 - 2012 UR - https://www.dynamore.de/de/download/papers/dynamore/de/download/papers/ls-dyna-forum-2012/documents/materials-5-2 SP - 171 EP - 172 ER - TY - JOUR A1 - Schimmer, Florian A1 - Ladewig, Sven A1 - Motsch, Nicole A1 - Hausmann, Joachim M. A1 - Ehrlich, Ingo T1 - Comparison of Low-Velocity Impact Damage Behavior of Unidirectional Carbon Fiber-Reinforced Thermoset and Thermoplastic Composites JF - Key Engineering Materials N2 - This paper investigates the damage behavior of thermoset and thermoplastic fiber-reinforced composites. The specimens were subjected to low-velocity impacts (LVI) to produce barely visible impact damages (BVID). To compare the dependency of the matrix system and the laminate lay-up on the impact damage, four test series were set up. Therefore, laminates with an epoxy (EP) and a polyether ether ketone (PEEK) matrix in a quasi-isotropic (QI) [+45/0/-45/90]2s and an orthotropic (OT) fiber lay-up [0/90]4s were manufactured. To eliminate the influence of variant fiber systems, the thermoplastic tape and the thermoset prepreg contain similar carbon fibers (CF). After impact testing with three different impact energies, inner damages were investigated by using ultrasonic analyses. To get a deeper understanding of the interior damage mechanisms, cross sections of the damaged areas were examined via reflected light microscopy. By using these destructive and non-destructive test methods, significant differences in the damage behavior of composites with thermoplastic and thermoset matrix systems were identified for both laminate lay-ups. KW - Barely Visible Impact Damage KW - Carbon Fiber Reinforced Plastic KW - Low-velocity-impact KW - Thermoplastics KW - Ultrasonic Analysis Y1 - 2019 U6 - https://doi.org/10.4028/www.scientific.net/KEM.809.9 SN - 1662-9795 VL - 809 SP - 9 EP - 14 PB - Trans Tech Publications ER -