TY - JOUR A1 - Launhardt, M. A1 - Wörz, A. A1 - Loderer, A. A1 - Laumer, Tobias A1 - Drummer, Dietmar A1 - Hausotte, Tino A1 - Schmidt, M. T1 - Detecting surface roughness on SLS parts with various measuring techniques JF - Polymer Testing N2 - Selective Laser Sintering (SLS) is an additive manufacturing technique whereby a laser melts polymer powder layer by layer to generate three-dimensional parts. It enables the fabrication of parts with high degrees of complexity, nearly no geometrical restrictions, and without the necessity of a tool or a mold. Due to the orientation in the building space, the processing parameters, and the powder properties, the resulting parts possess an increased surface roughness. In comparison to other manufacturing techniques, e.g. injection molding, the surface roughness of SLS parts results from partially melted powder particles on the surface layer. The actual surface roughness must thus be characterized with respect to the part's eventual application. At the moment, there is no knowledge regarding which measuring technique is most suitable for detecting and quantifying SLS parts' surface roughness. The scope of this paper is to compare tactile profile measurement methods, as established in industry, to optical measurement techniques such as Focus Variation, Fringe Projection Technique (FPT), and Confocal Laser Scanning Microscope (CLSM). The advantages and disadvantages of each method are presented and, additionally, the effect of tactile measurement on a part's surface is investigated. KW - Selective Laser Sintering (SLS) KW - PA12 KW - Surface roughness KW - Measuring technique Y1 - 2016 SN - 0142-9418 U6 - https://doi.org/10.1016/j.polymertesting.2016.05.022 SN - 1873-2348 VL - 53 SP - 217 EP - 226 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Laumer, Tobias A1 - Wudy, Katrin A1 - Drexler, Maximilian A1 - Amend, Philipp A1 - Roth, Stephan A1 - Drummer, Dietmar A1 - Schmidt, Michael T1 - Fundamental investigation of laser beam melting of polymers for additive manufacture JF - Journal of Laser Applications N2 - By selective laser sintering (SLS), polymer powders are molten layer by layer to build conventional prototypes or parts in small series with geometrical freedom that cannot be achieved by other manufacturing technologies. The SLS process is mainly defined by the beam–matter interaction between powder material, laser radiation and different material characteristics by itself. However the determination of these different material characteristics is problematic because powder material imposes certain requirements that cannot sufficiently be provided by conventional measurement methods. Hence new fundamental investigation methods to determine the optical and thermal material characteristics like the thermal diffusivity, thermal conductivity, or the influence of different heating rates on the melting behavior are presented in this paper. The different analysis methods altogether improve the process of understanding to allow recommendations for the future process controlling. Y1 - 2014 U6 - https://doi.org/10.2351/1.4892848 SN - 1938-1387 SN - 1042-346X VL - 26 IS - 4 PB - AIP Publishing ER - TY - JOUR A1 - Osmanlic, Fuad A1 - Wudy, Katrin A1 - Laumer, Tobias A1 - Schmidt, Michael A1 - Drummer, Dietmar A1 - Körner, Carolin T1 - Modeling of Laser Beam Absorption in a Polymer Powder Bed JF - Polymers N2 - In order to understand the absorption characteristic, a ray trace model is developed by taking into account the reflection, absorption and refraction. The ray paths are resolved on a sub-powder grid. For validation, the simulation results are compared to analytic solutions of the irradiation of the laser beam onto a plain surface. In addition, the absorptance, reflectance and transmittance of PA12 powder layers measured by an integration sphere setup are compared with the numerical results of our model. It is shown that the effective penetration depth can be lower than the penetration depth in bulk material for polymer powders and, therefore, can increase the energy density at the powder bed surface. The implications for modeling of the selective laser sintering (SLS) process and the processability of fine powder distributions and high powder bed densities are discussed. KW - additive manufacturing KW - laser absorption KW - PA12 KW - polyamide 12 KW - powder bed Y1 - 2018 U6 - https://doi.org/10.3390/polym10070784 VL - 10 IS - 7 SP - 1 EP - 11 PB - MDPI ER -