TY - JOUR A1 - Ott, Christian A1 - Rosengarth, Katharina A1 - Doenitz, Christian A1 - Hoehne, Julius A1 - Wendl, Christina A1 - Dodoo-Schittko, Frank A1 - Lang, Elmar Wolfgang A1 - Schmidt, Nils Ole A1 - Goldhacker, Markus T1 - Preoperative Assessment of Language Dominance through Combined Resting-State and Task-Based Functional Magnetic Resonance Imaging JF - Journal of personalized medicine N2 - Brain lesions in language-related cortical areas remain a challenge in the clinical routine. In recent years, the resting-state fMRI (RS-fMRI) was shown to be a feasible method for preoperative language assessment. The aim of this study was to examine whether language-related resting-state components, which have been obtained using a data-driven independent-component-based identification algorithm, can be supportive in determining language dominance in the left or right hemisphere. Twenty patients suffering from brain lesions close to supposed language-relevant cortical areas were included. RS-fMRI and task-based (TB-fMRI) were performed for the purpose of preoperative language assessment. TB-fMRI included a verb generation task with an appropriate control condition (a syllable switching task) to decompose language-critical and language-supportive processes. Subsequently, the best fitting ICA component for the resting-state language network (RSLN) referential to general linear models (GLMs) of the TB-fMRI (including models with and without linguistic control conditions) was identified using an algorithm based on the Dice index. Thereby, the RSLNs associated with GLMs using a linguistic control condition led to significantly higher laterality indices than GLM baseline contrasts. LIs derived from GLM contrasts with and without control conditions alone did not differ significantly. In general, the results suggest that determining language dominance in the human brain is feasible both with TB-fMRI and RS-fMRI, and in particular, the combination of both approaches yields a higher specificity in preoperative language assessment. Moreover, we can conclude that the choice of the language mapping paradigm is crucial for the mentioned benefits. KW - resting-state fMRI KW - task-based fMRI KW - brain mapping KW - language assessment KW - data-driven analysis Y1 - 2021 U6 - https://doi.org/10.3390/jpm11121342 VL - 11 IS - 12 PB - MDPI ER - TY - GEN A1 - Ott, C. A1 - Rosengarth, K. A1 - Doenitz, Christian A1 - Hoehne, J. A1 - Wendl, C. A1 - Dodoo-Schittko, Frank A1 - Lang, E. A1 - Schmidt, Nils Ole A1 - Goldhacker, Markus T1 - Preoperative assessment of language dominance through combined resting-state and task-based functional magnetic resonance imaging T2 - Brain and Spine N2 - Background: Brain lesions in language-related cortical areas remain a challenge in the clinical routine. In recent years the resting-state fMRI (rs-fMRI) was shown to be a feasible method for preoperative language assessment. The aim of this study was to examine whether language-related resting-state components, which have been obtained using a data-driven independent-component-based identification algorithm, can be supportive in determining language dominance in the left or right hemisphere. Methods: Twenty patients suffering from brain lesions close to supposed language relevant cortical areas were included. Rs-fMRI and task-based (tb-fMRI) were performed for the purpose of preoperative language assessment. Tb-fMRI included a verb generation task with an appropriate control condition (a syllable switching task) to decompose language critical and language supportive processes. Subsequently, the best fitting ICA component for the resting-state language network (RSLN) referential to general linear models (GLMs) of the tb-fMRI (including models with and without linguistic control conditions) was identified using an algorithm based on the Dice-index. Results: The RSLNs associated with GLMs using a linguistic control condition led to significantly higher laterality indices than GLM baseline contrasts. LIs derived from GLM contrasts with and without control conditions alone did not differ significantly. Conclusion: In general, the results suggest that determining language dominance in the human brain is feasible both with tb-fMRI and rs-fMRI, and in particular, the combination of both approaches yields a higher specificity in preoperative language assessment. Moreover, we can conclude that the choice of the language mapping paradigm is crucial for the mentioned benefits. Y1 - 2021 U6 - https://doi.org/10.1016/j.bas.2021.100523 VL - 1 IS - Suppl. 2 PB - Elsevier ER - TY - CHAP A1 - Weber, Joachim A1 - Doenitz, Christian A1 - Brawanski, Alexander A1 - Palm, Christoph T1 - Data-Parallel MRI Brain Segmentation in Clinicial Use BT - Porting FSL-Fastv4 to GPGPUs T2 - Bildverarbeitung für die Medizin 2015; Algorithmen - Systeme - Anwendungen; Proceedings des Workshops vom 15. bis 17. März 2015 in Lübeck N2 - Structural MRI brain analysis and segmentation is a crucial part in the daily routine in neurosurgery for intervention planning. Exemplarily, the free software FSL-FAST (FMRIB’s Segmentation Library – FMRIB’s Automated Segmentation Tool) in version 4 is used for segmentation of brain tissue types. To speed up the segmentation procedure by parallel execution, we transferred FSL-FAST to a General Purpose Graphics Processing Unit (GPGPU) using Open Computing Language (OpenCL) [1]. The necessary steps for parallelization resulted in substantially different and less useful results. Therefore, the underlying methods were revised and adapted yielding computational overhead. Nevertheless, we achieved a speed-up factor of 3.59 from CPU to GPGPU execution, as well providing similar useful or even better results. KW - Brain Segmentation KW - Magnetic Resonance Imaging KW - Parallel Execution KW - Voxel Spacing KW - General Purpose Graphic Processing Unit KW - Kernspintomografie KW - Gehirn KW - Bildsegmentierung KW - Parallelverarbeitung Y1 - 2015 U6 - https://doi.org/10.1007/978-3-662-46224-9_67 SP - 389 EP - 394 PB - Springer CY - Berlin ER -