TY - JOUR A1 - Lautenschläger, Toni A1 - Leis, Alexander A1 - Dendorfer, Sebastian A1 - Palm, Christoph A1 - Schreiner, Rupert A1 - Langer, Christoph A1 - Prommesberger, Christian A1 - Ławrowski, Robert Damian A1 - Dams, Florian A1 - Bornmann, Benjamin A1 - Navitski, Aliaksandr A1 - Serbun, Pavel A1 - Müller, Günter A1 - Liebetruth, Thomas A1 - Kohlert, Dieter A1 - Pernsteiner, Jochen A1 - Schreier, Franz A1 - Heerklotz, Sabrina A1 - Heerklotz, Allwin A1 - Boos, Alexander A1 - Herwald, Dominik A1 - Monkman, Gareth J. A1 - Treiber, Daniel A1 - Mayer, Matthias A1 - Hörner, Eva A1 - Bentz, Alexander A1 - Shamonin (Chamonine), Mikhail A1 - Johansen, Søren Peter A1 - Reichel, Marco A1 - Stoll, Andrea A1 - Briem, Ulrich A1 - Dullien, Silvia A1 - Renkawitz, Tobias A1 - Weber, Tim A1 - Dendorfer, Sebastian A1 - Grifka, Joachim A1 - Penzkofer, Rainer A1 - Barnsteiner, K. A1 - Jovanovik, M. A1 - Wernecke, P. A1 - Vögele, A. A1 - Bachmann, T. A1 - Plötz, Martin A1 - Schliekmann, Claus A1 - Wels, Harald A1 - Helmberger, Paul A1 - Kaspar, M. A1 - Hönicka, M. A1 - Schrammel, Siegfried A1 - Enser, Markus A1 - Schmidmeier, Monika A1 - Schroll-Decker, Irmgard A1 - Haug, Sonja A1 - Gelfert, Verena A1 - Vernim, Matthias ED - Baier, Wolfgang T1 - Forschungsbericht 2012 T3 - Forschungsberichte der OTH Regensburg - 2012 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-7834 CY - Regensburg ER - TY - JOUR A1 - Weber, Tim A. A1 - Dendorfer, Sebastian A1 - Bulstra, Sjoerd K. A1 - Grifka, Joachim A1 - Verkerke, Gijsbertus Jacob A1 - Renkawitz, Tobias T1 - Gait six month and one-year after computer assisted Femur First THR vs. conventional THR. Results of a patient- and observer- blinded randomized controlled trial JF - Gait & Posture N2 - A prospective randomized controlled trial is presented that is used to compare gait performance between the computer assisted Femur First (CAS FF) operation method and conventional THR (CON). 60 patients underwent a 3D gait analysis of the lower extremity at pre-operative, 6 months post-operative and twelve months post-operative. Detailed verification experiments were facilitated to ensure the quality of data as well as to avoid over-interpreting of the data. The results confirm a similar data-quality as reported in the literature. Walking speed, range of motion and symmetry thereof improved over the follow-up period, without significant differences between the groups. While all parameters do significantly increase over the follow-up period for both groups, there were no significant differences between them at any given time-point. Patients undergoing CAS FF showed a trend to improved hip flexion angle indicating a possible long-term benefit. KW - Biomechanics KW - Combined anteversion KW - Computer-assisted surgery KW - Femur first KW - Gait analysis Y1 - 2016 U6 - https://doi.org/10.1016/j.gaitpost.2016.06.035 VL - vol. 49 SP - 418 EP - 425 ER - TY - JOUR A1 - Renkawitz, Tobias A1 - Weber, Tim A. A1 - Dullien, Silvia A1 - Woerner, Michael A1 - Dendorfer, Sebastian A1 - Grifka, Joachim A1 - Weber, Markus T1 - Leg length and offset differences above 5 mm after total hip arthroplasty are associated with altered gait kinematics JF - Gait & Posture N2 - We aimed to investigate the relationship between postoperative leg length/offset (LL/OS) reconstruction and gait performance after total hip arthroplasty (THA). In the course of a prospective randomized controlled trial, 60 patients with unilateral hip arthrosis received cementless THA through a minimally-invasive anterolateral surgical approach. One year post-operatively, LL and global OS restoration were analyzed and compared to the contralateral hip on AP pelvic radiographs. The combined postoperative limb length/OS reconstruction of the operated hip was categorized as restored (within 5 mm) or non-restored (more than 5 mm reduction or more than 5 mm increment). The acetabular component inclination, anteversion and femoral component anteversion were evaluated using CT scans of the pelvis and the femur. 3D gait analysis of the lower extremity and patient related outcome measures (HHS, HOOS, EQ-5D) were obtained pre-operatively, six months and twelve months post-operatively by an observer blinded to radiographic results. Component position of cup and stem was comparable between the restored and non-restored group. Combined LL and OS restoration within 5 mm resulted in higher Froude number (p < 0.001), normalized walking speed (p < 0.001) and hip range-of-motion (ROM) (p = 0.004) during gait twelve months postoperatively, whereas gait symmetry was comparable regardless of LL and OS reconstruction at both examinations. Clinical scores did not show any relevant association between the accuracy of LL or OS reconstruction and gait six/twelve months after THA. In summary, postoperative LL/OS discrepancies larger than 5 mm relate to unphysiological gait kinematics within the first year after THA. DRKS00000739, German Clinical Trials Register. KW - THA KW - Leg length KW - Offset KW - Gait analysis KW - Biomechanics Y1 - 2016 U6 - https://doi.org/10.1016/j.gaitpost.2016.07.011 VL - vol. 49 SP - 196 EP - 201 ER - TY - JOUR A1 - Weber, Markus A1 - Merle, Christian A1 - Nawabi, Danyal H. A1 - Dendorfer, Sebastian A1 - Grifka, Joachim A1 - Renkawitz, Tobias T1 - Inaccurate offset restoration in total hip arthroplasty results in reduced range of motion JF - Scientific Reports N2 - Offset restoration in total hip arthroplasty (THA) is associated with postoperative range of motion (ROM) and gait kinematics. We aimed to research into the impact of high offset (HO) and standard stems on postoperative ROM. 121 patients received cementless THA through a minimally-invasive anterolateral approach. A 360° hip ROM analysis software calculated impingement-free hip movement based on postoperative 3D-CTs compared to ROM values necessary for activities of daily living (ADL). The same model was then run a second time after changing the stem geometry between standard and HO configuration with the implants in the same position. HO stems showed higher ROM for all directions between 4.6 and 8.9° (p < 0.001) compared with standard stems but with high interindividual variability. In the subgroup with HO stems for intraoperative offset restoration, the increase in ROM was even higher for all ROM directions with values between 6.1 and 14.4° (p < 0.001) compared to offset underrestoration with standard stems. Avoiding offset underrestoration resulted in a higher amount of patients of over 20% for each ROM direction that fulfilled the criteria for ADL (p < 0.001). In contrast, in patients with standard stems for offset restoration ROM did increase but not clinically relevant by offset overcorrection for all directions between 3.1 and 6.1° (p < 0.001). Offset overcorrection by replacing standard with HO stems improved ROM for ADL in a low number of patients below 10% (p > 0.03). Patient-individual restoration of offset is crucial for free ROM in THA. Both over and underrestoration of offset should be avoided. KW - Adaptive clinical trial KW - Bone imaging Y1 - 2020 U6 - https://doi.org/10.1038/s41598-020-70059-1 VL - 10 IS - 13208 SP - 9 PB - Nature ER - TY - JOUR A1 - Benditz, Achim A1 - Auer, Simon A1 - Spörrer, J.F. A1 - Wolkerstorfer, S. A1 - Grifka, Joachim A1 - Süß, Franz A1 - Dendorfer, Sebastian T1 - Regarding loads after spinal fusion, every level should be seen separately: a musculoskeletal analysis JF - European Spine Journal N2 - The number of spinal fusion surgeries is steadily increasing and biomechanical consequences are still in debate. The aim of this study is to provide biomechanical insights into the sagittal balance of the spine and to compare spinal load before and after spinal fusion. METHOD: The joint reaction forces of 52 patients were analyzed in proximo-distal and antero-posterior direction from the levels T12-L1 to L5-S1 using musculoskeletal simulations. RESULTS: In 104 simulations, pre-surgical forces were equal to post-surgical. The levels L4-L5 and T12-L1, however, showed increased spinal forces compression forces with higher sagittal displacement. Improved restauration of sagittal balance was accompanied by lower spinal load. AP shear stress, interestingly decreased with sagittal imbalance. CONCLUSION: Imbalanced spines have a risk of increased compression forces at Th12-L1. L4-L5 always has increased spinal loads. These slides can be retrieved under Electronic Supplementary Material. KW - AnyBody Modeling System KW - Musculoskeletal analysis KW - Sagittal balance KW - Spinal fusion KW - Spine biomechanics KW - Biomechanische Analyse KW - Wirbelsäulenversteifung KW - Vergleichende Anatomie Y1 - 2018 U6 - https://doi.org/10.1007/s00586-018-5476-5 VL - 27 IS - 8 SP - 1905 EP - 1910 PB - Springer-Verlag ER - TY - CHAP A1 - Weber, Tim A. A1 - Dendorfer, Sebastian A1 - Dullien, Silvia A1 - Grifka, Joachim A1 - Verkerke, Gijsbertus Jacob A1 - Renkawitz, Tobias T1 - Measuring functional outcome after total hip replacement with subject-specific hip joint loading T2 - Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine N2 - Total hip replacement is an often-performed orthopedic surgical procedure; the amount of procedures undertaken will increase since our life expectancy is growing. In order to optimize function, hip biomechanics should be restored to as near normal as possible. The goal of this pilot study was to determine whether or not it is feasible to compute the vectorial hip reaction force pathways on the head of the prosthesis and the force angles relative to the cup of the prosthesis that occur during gait in total hip replacement patients, serving as an objective measurement of the functional outcome following hip replacement. A three-dimensional gait analysis, measuring ground reaction forces and kinematics, was performed. The data retrieved from the gait analysis was used as the input for the musculoskeletal model to compute vectorial joint reaction forces for data processing. To evaluate the position and orientation of the joint reaction forces, the force path, as well as the force angles for the operated and non-operated joint, has been calculated during the stance phase of the specific leg. The force path for subject 2 on the non-operated side is only located in the posterior-lateral quarter, as is the force path for subject 1. In contrast to this subject, the force path for subject 2 at the operated hip joint can be found only within the anterior quarter of the head of the implant, where it is nearly equally distributed in the medio-lateral half of the prosthesis head. The force-inclination angles on the cup of subject 1, with respect to the plane of the socket face, indicates that the force vector is mainly positioned in the same quadrant when compared with subject 2 (in a cup-fixed coordinate system). The force-anteversion angle behaves similarly to the force-inclination angle, even when the effects are not as pronounced. The proposed methods in this article are aiming to define two functional outcomes of total hip replacement that are related to wear and rim loading. It is accepted that wear is not only a function of time, but a function of use. Owing to the methods listed in this article, we are able to determine a) the applied force and b) the sliding distance (force pathway) in a subject-specific manner. The computed hip-reaction force angles and the distance to the rim cup are a measurement for cup or rim loading, and occurs in the so-called safe-zones. This method may well give us insight into the biomechanical situation during gait, after receiving total hip replacement, that we need to fully understand the mechanisms acting on a hip joint and to prove a possible increase of functional outcome after receiving total hip replacement. KW - total hip replacement KW - subject-specific musculoskeletal modeling KW - functional outcome KW - force pathways KW - force angles KW - critical hip joint loading KW - rim loading KW - cup loading KW - Hüftgelenkprothese KW - Biomechanik KW - Lastverteilung KW - Ganganalyse KW - Simulation Y1 - 2012 U6 - https://doi.org/10.1177/0954411912447728 VL - 226 IS - 12 SP - 939 EP - 946 ER - TY - CHAP A1 - Weber, Tim A1 - Dendorfer, Sebastian A1 - Renkawitz, Tobias A1 - Dullien, Silvia A1 - Grifka, Joachim T1 - Clinical gait analysis combined with musculoskeletal modelling – coding a new generation of evaluation instruments T2 - Deutsche Gesellschaft für Biomechanik, Murnau, 2011 Y1 - 2011 ER - TY - CHAP A1 - Weber, Tim A1 - Dendorfer, Sebastian A1 - Grifka, Joachim A1 - Weber, Markus A1 - Wörner, Michael A1 - Dullien, Silvia A1 - Verkerke, Gijsbertus Jacob A1 - Renkawitz, Tobias T1 - Verbessert die computerassistierte Femur First Operationstechnik für die Hüftendoprothetik den muskuloskelettalen Lastfall auf das Hüftgelenk? T2 - DKOU 2015, Deutscher Kongress für Orthopädie und Unfallchirurgie 2015 Y1 - 2015 UR - https://www.researchgate.net/publication/283259007_Verbessert_die_computerassistierte_Femur_First_Operationstechnik_fur_die_Huftendoprothetik_den_muskuloskelettalen_Lastfall_auf_das_Huftgelenk ER - TY - CHAP A1 - Weber, Tim A1 - Renkawitz, Tobias A1 - Grifka, Joachim A1 - Bulstra, Sjoerd K. A1 - Verkerke, Gijsbertus Jacob A1 - Dendorfer, Sebastian T1 - The musculoskeletal load scenario of computer-assisted Femur-First THR up to one year after surgery T2 - VI International Conference on Computational Bioengineering, Barcelona, Sept. 2015 Y1 - 2015 UR - https://www.researchgate.net/publication/281745827_The_musculoskeletal_load_scenario_of_computer-assisted_Femur-First_THR_up_to_one_year_after_surgery ER - TY - JOUR A1 - Völlner, Florian A1 - Weber, Tim A. A1 - Weber, Markus A1 - Renkawitz, Tobias A1 - Dendorfer, Sebastian A1 - Grifka, Joachim A1 - Craiovan, Benjamin T1 - A simple method for determining ligament stiffness during total knee arthroplasty in vivo JF - Scientific Reports N2 - A key requirement in both native knee joints and total knee arthroplasty is a stable capsular ligament complex. However, knee stability is highly individual and ranges from clinically loose to tight. So far, hardly any in vivo data on the intrinsic mechanical of the knee are available. This study investigated if stiffness of the native ligament complex may be determined in vivo using a standard knee balancer. Measurements were obtained with a commercially available knee balancer, which was initially calibrated in vitro. 5 patients underwent reconstruction of the force-displacement curves of the ligament complex. Stiffness of the medial and lateral compartments were calculated to measure the stability of the capsular ligament complex. All force-displacement curves consisted of a non-linear section at the beginning and of a linear section from about 80 N onwards. The medial compartment showed values of 28.4 ± 1.2 N/mm for minimum stiffness and of 39.9 ± 1.1 N/mm for maximum stiffness; the respective values for the lateral compartment were 19.9 ± 0.9 N/mm and 46.6 ± 0.8 N/mm. A commercially available knee balancer may be calibrated for measuring stiffness of knee ligament complex in vivo, which may contribute to a better understanding of the intrinsic mechanical behaviour of knee joints. KW - Biomechanische Analyse KW - Kniegelenkband KW - Steifigkeit Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-41732-x VL - 9 SP - 1 EP - 8 PB - Nature ER -