TY - CHAP A1 - Gross, Simon A1 - Süß, Franz A1 - Verkerke, Gijsbertus Jacob A1 - Dendorfer, Sebastian T1 - Simulating fatigue in musculoskeletal models using surface electromyography, ECCOMAS Congress, Crete, Greece, 201 T2 - ECCOMAS Congress, Crete, Greece, 2016 Y1 - 2016 ER - TY - CHAP A1 - Süß, Franz A1 - Kubowitsch, Simone A1 - Verkerke, Gijsbertus Jacob A1 - Dendorfer, Sebastian T1 - The influence of stress on spinal loading T2 - ESEM webconference, Dez. 2017 Y1 - 2016 ER - TY - CHAP A1 - Dendorfer, Sebastian A1 - Kubowitsch, Simone T1 - The interaction of mental stress and biomechanics T2 - Health Technology Triangle, Weiden, 2016 Y1 - 2016 ER - TY - CHAP A1 - Al-Munajjed, Amir Andreas A1 - Nolte, Daniel A1 - Rasmussen, John A1 - Dendorfer, Sebastian T1 - Force distribution in the foot during braking – a musculoskeletal approach T2 - Human Modeling Symposium 2014, Munich, Germany N2 - High loads can appear in the individual joints of the human foot while the driver uses the pedals, in particular, during breaking. Measuring these internal forces is very difficult or almost impossible; therefore, advanced models are necessary to perform musculoskeletal simulations. The objective of this investigation was to see what loads are acting in the individual foot joints from the phalanges to calcaneus and talus during different brake scenarios. The Glasgow-Maastricht AnyBody Foot Model with 26 separate segments, connected by joints, ligaments and muscles was used inside the AnyBody Modeling System to compute individual mid foot joint loads. The amount, the direction of the force and additionally also the load insertion point was varied for several simulations. Figure 1: Seated musculoskeletal body model with applied brake force and forces for the lateral, intermediate and medial cuneiform-navicular joint for two different brake forces. The simulation showed that for the different brake scenarios, different muscles will be activated in the human and therefore different loads are apply in the fore-and mid-foot, respectively. The torso of the subject was assumed to be fixed in the seat. Further studies are ongoing to simulate the seat as an elastic element that allows different H-point locations according to the different loadings in the foot from the brake pedal using a new inverse dynamics analysis method called force-dependent kinematics. Y1 - 2014 UR - https://www.researchgate.net/publication/281229902_Force_distribution_in_the_foot_during_braking_-a_musculoskeletal_approach ER - TY - JOUR A1 - Völlner, Florian A1 - Weber, Tim A. A1 - Weber, Markus A1 - Renkawitz, Tobias A1 - Dendorfer, Sebastian A1 - Grifka, Joachim A1 - Craiovan, Benjamin T1 - A simple method for determining ligament stiffness during total knee arthroplasty in vivo JF - Scientific Reports N2 - A key requirement in both native knee joints and total knee arthroplasty is a stable capsular ligament complex. However, knee stability is highly individual and ranges from clinically loose to tight. So far, hardly any in vivo data on the intrinsic mechanical of the knee are available. This study investigated if stiffness of the native ligament complex may be determined in vivo using a standard knee balancer. Measurements were obtained with a commercially available knee balancer, which was initially calibrated in vitro. 5 patients underwent reconstruction of the force-displacement curves of the ligament complex. Stiffness of the medial and lateral compartments were calculated to measure the stability of the capsular ligament complex. All force-displacement curves consisted of a non-linear section at the beginning and of a linear section from about 80 N onwards. The medial compartment showed values of 28.4 ± 1.2 N/mm for minimum stiffness and of 39.9 ± 1.1 N/mm for maximum stiffness; the respective values for the lateral compartment were 19.9 ± 0.9 N/mm and 46.6 ± 0.8 N/mm. A commercially available knee balancer may be calibrated for measuring stiffness of knee ligament complex in vivo, which may contribute to a better understanding of the intrinsic mechanical behaviour of knee joints. KW - Biomechanische Analyse KW - Kniegelenkband KW - Steifigkeit Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-41732-x VL - 9 SP - 1 EP - 8 PB - Nature ER - TY - CHAP A1 - Weber, Tim A1 - Dendorfer, Sebastian A1 - Bulstra, Sjoerd K. A1 - Verkerke, Gijsbertus Jacob A1 - Renkawitz, Tobias T1 - Biomechanical Outcome after computer-assisted vs. Conventional THR T2 - ANSYS Conference & 32th CADFEM Users' Meeting 2014, 04.-06. Juni, Nürnberg Y1 - 2014 UR - https://www.researchgate.net/publication/264547774_Biomechanical_outcome_after_computer-assisted_vs_conventional_THR ER - TY - CHAP A1 - Gross, Simon A1 - Verkerke, Gijsbertus Jacob A1 - Dendorfer, Sebastian T1 - Combined Experimental and Numerical Approach to Investigate Changes in Muscle Recruitment Pattern of the Back Muscles during Exhausting Exercise T2 - World Congress Biomechanics Dublin, 2018 N2 - In recent years, musculoskeletal computation has become a widely used tool to investigate joint and muscle forces within the human body. However, the issue of muscle fatigue is not considered adequately in most models and is a challenging task. One aspect that needs to be examined is the interaction of muscles during an exhausting task. Therefore, an experimental study was designed to analyze the changes of back muscle recruitment pattern during such exercises. In this study 38 subjects (27 male, 11 female, height = 177±8.5 cm, weight = 74.0±13.6 kg) participated. Each subject had to perform three static and three dynamic exhausting exercises where the back muscles were loaded with subject specific forces using a dynamometer adapter especially designed for the trunk muscles. To collect the muscle activity, twelve surface electromyography sensors were applied on the back, and four on the abdominal muscles. Muscle activity and fatigue were analyzed by calculating the maximum voluntary contraction normalized signal and the median frequency. At first the fatigue of m. erector spinae and m. multifidi was analyzed, since these muscles carry the main load during the exercises. Subsequently the activity of the m. trapezius, m. rectus abdominis and m. obliquus externus were investigated to determine recruitment patterns. To gain more detailed information of these patterns a numerical model was built using the AnyBody Modeling System™. Analyzing the measurements, we can observe an increasing muscle activity during isokinetic exercises while the force is constant. Since the activity in the simulation is defined as the current force output divided by the strength of the muscle, the strength parameter was scaled down based on the measured data, assuming a linear force – activity correlation, and using a numerical algorithm considering the influence of cross talk. The results show, that changes in recruitment pattern can be divided into three major subgroups. Prior to total exhaustion, some of the subjects show additional activation of muscles in the trapezius region, while other subjects show an additional activation of abdominal muscles, increasing the intra-abdominal pressure which supports the spine. In the third group an activation in both regions can be observed. The numerical simulations show an increasing activity of abdominal muscles as well as muscles in the upper back. Especially the m. latissimus dorsi shows a significantly higher activity. The results lead to the conclusion that prior to total exhaustion, additional muscles are recruited to support the main muscles. It was shown that abdominal muscles are activated to support back muscles by pressurizing the trunk cavity to delay total exhaustion as long as possible. In conclusion, the results show that changes in muscle recruitment pattern need to be considered when introducing muscle fatigue to musculoskeletal models. Y1 - 2018 ER - TY - JOUR A1 - Auer, Simon A1 - Kurbowitsch, Simone A1 - Süß, Franz A1 - Renkawitz, Tobias A1 - Krutsch, Werner A1 - Dendorfer, Sebastian T1 - Mental stress reduces performance and changes musculoskeletal loading in football-related movements JF - Science and Medicine in Football N2 - Purpose: Football players have a high risk of leg muscle injuries, especially when exposed to mental stress. Hence, this study investigated the musculoskeletal response of elite youth football players during highly dynamic movements under stress. The hypothesis is that mental stress reduces performance and changes the muscular forces exerted. Materials & methods: Twelve elite youth football players were subjected to mental stress while performing sports-specific change-of-direction movements. A modified version of the d2 attention test was used as stressor. The kinetics are computed using inverse dynamics. Running times and exerted forces of injury-prone muscles were analysed. Results: The stressor runs were rated more mentally demanding by the players (p = 0.006, rs = 0.37) with unchanged physical demand (p = 0.777, rs = 0.45). This resulted in 10% longer running times under stress (p < 0.001, d = −1.62). The musculoskeletal analysis revealed higher peak muscle forces under mental stress for some players but not for others. Discussion: The study shows that motion capture combined with musculoskeletal computation is suitable to analyse the effects of stress on athletes in highly dynamic movements. For the first time in football medicine, our data quantifies an association between mental stress with reduced football players’ performance and changes in muscle force. KW - Biomechanics KW - muscle injury KW - attention KW - musculoskeletal simulation Y1 - 2020 U6 - https://doi.org/10.1080/24733938.2020.1860253 VL - 5 IS - 4 SP - 323 EP - 329 PB - Taylor & Francis ER - TY - JOUR A1 - Putzer, Michael A1 - Ehrlich, Ingo A1 - Rasmussen, John A1 - Gebbeken, Norbert A1 - Dendorfer, Sebastian T1 - Sensitivity of lumbar spine loading to anatomical parameters JF - Journal of Biomechanics N2 - Musculoskeletal simulations of lumbar spine loading rely on a geometrical representation of the anatomy. However, this data has an inherent inaccuracy. This study evaluates the influence of defined geometrical parameters on lumbar spine loading utilising five parametrised musculoskeletal lumbar spine models for four different postures. The influence of the dimensions of vertebral body, disc, posterior parts of the vertebrae as well as the curvature of the lumbar spine was studied. Additionally, simulations with combinations of selected parameters were conducted. Changes in L4/L5 resultant joint force were used as outcome variable. Variations of the vertebral body height, disc height, transverse process width and the curvature of the lumbar spine were the most influential. These parameters can be easily acquired from X-rays and should be used to morph a musculoskeletal lumbar spine model for subject-specific approaches with respect to bone geometry. Furthermore, the model was very sensitive to uncommon configurations and therefore, it is advised that stiffness properties of discs and ligaments should be individualised. KW - Musculoskeletal simulation KW - Lumbar spine KW - Parameter study KW - Vertebra KW - Wirbelsäule KW - Belastung KW - Simulation Y1 - 2015 U6 - https://doi.org/10.1016/j.jbiomech.2015.11.003 VL - 49 IS - 6 SP - 953 EP - 958 PB - Elsevier Science ER - TY - JOUR A1 - Dendorfer, Sebastian A1 - Hammer, Joachim A1 - Lenich, Andreas T1 - Characterisation and testing of biomaterials JF - Technology and Health Care KW - Testing biomaterials KW - Characterisation testing KW - Biomaterial KW - Test Y1 - 2011 U6 - https://doi.org/10.3233/THC-2011-0644 VL - 19 IS - 5 SP - 357 EP - 371 ER -