TY - CHAP A1 - Serbun, Pavel A1 - Porshyn, Vitali A1 - Müller, Günter A1 - Mingels, Stephan A1 - Lützenkirchen-Hecht, Dirk A1 - Bachmann, Michael A1 - Düsberg, Felix A1 - Dams, Florian A1 - Hofmann, Martin A1 - Pahlke, Andreas A1 - Prommesberger, Christian A1 - Langer, Christoph A1 - Ławrowski, Robert Damian A1 - Schreiner, Rupert T1 - Field emission behavior of Au-tip-coated p-type Si pillar structures T2 - 29th International Vacuum Nanoelectronics Conference (IVNC), 2016, 11-15 July, Vancouver, BC, Canada N2 - Precisely aligned high-aspect-ratio (HAR) silicon tip arrays were fabricated using enhanced reactive ion etching with an inductively-coupled-plasma followed by a sharpening oxidation. A gold thin film was then sputtered only on the tips of the HAR structures. Field-emission (FE) properties from Au-coated HAR p-Si tip array cathodes have been systematically investigated by means of field emission scanning microscopy (FESM). A rather high efficiency of the HAR Si structures (71% at 550 V), but limited homogeneous FE with currents of 1-600 nA might be correlated with the varying geometry of the tips and the presence of oxides. I-V measurements of single Au-coated HAR emitters revealed activation effects and the saturation current region at 3 nA. An increase of the saturation current by 4 orders of magnitude was observed during 20 hours of conditioning at constant voltage, which finally resulted in nearly reproducible FN curves with a ß-factor of 473. An excellent stability of the emission current of less than 1 % was obtained during the additional long-time conditioning at constant voltage. Optical switching under halogen lamp illumination resulted in at least 2 times higher saturation currents and showed a linear dependence of the FE current on the light color temperature. KW - field emission KW - p-type Si-pillar array KW - surface oxide effects KW - photoemission Y1 - 2016 U6 - https://doi.org/10.1109/IVNC.2016.7551516 SN - 2380-6311 SP - 181 EP - 182 PB - IEEE ER - TY - CHAP A1 - Schels, Andreas A1 - Herdl, Florian A1 - Hausladen, Matthias A1 - Wohlfartsstätter, Dominik A1 - Bachmann, Michael A1 - Edler, Simon A1 - Düsberg, Felix A1 - Pahlke, Andreas A1 - Buchner, Philipp A1 - Schreiner, Rupert A1 - Hansch, Walter T1 - Beta Factor Mapping of Individual Emitting Tips During Integral Operation of Field Emission Arrays T2 - 2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA N2 - Emission uniformity mappings of field emitter arrays provide important insight into degradation mechanisms, but are often laborious, non-integral, costly, or not quantifiable. Here, a low-cost Raspberry Pi HQ camera is used as an extraction anode to quantify the emission distribution in field emitter arrays. A verification measurement using controlled SEM electron beams proves, that current-voltage characteristics of individual emission sites can be determined by combining the integral electrical data with the image data. The characteristics are used to quantify the field enhancement factors of an 30x30 silicon field emitter array during integral operation. Comparison of the field enhancement factor distributions before and after a one-hour constant current operation at 1 µA shows an increase from 50 actively emitting tips before to 156 after the measurement. It is shown, that the distribution of field enhancement factors shifts towards lower values, due to the increasing degradation for high field enhancement tips, especially above 1500. KW - field emission KW - field emission imaging KW - field emission distribution KW - field enhancement factor KW - CMOS imaging KW - beta factor Y1 - 2023 SN - 979-8-3503-0143-4 U6 - https://doi.org/10.1109/IVNC57695.2023.10188957 SP - 224 EP - 226 PB - IEEE ER - TY - CHAP A1 - Herdl, Florian A1 - Kueddelsmann, Maximillian J. A1 - Schels, Andreas A1 - Bachmann, Michael A1 - Edler, Simon A1 - Wohlfartsstätter, Dominik A1 - Düsberg, Felix A1 - Prugger, Alexander A1 - Dillig, Michael A1 - Dams, Florian A1 - Schreiner, Rupert A1 - Coileáin, Cormac Ó. A1 - Zimmermann, Stefan A1 - Pahlke, Andreas A1 - Duesberg, Georg S. T1 - Characterization and Operation of Graphene-Oxide-Semiconductor Emitters at Atmospheric Pressure Levels T2 - 2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA N2 - In recent years Graphene-Oxide-Semiconductor (GOS) electron emitters have attracted a lot of interest due to their outstanding durability in modest vacuum conditions. However, the performance at ambient pressure remains largely unexplored. In this study GOS-emitters are characterized in nitrogen and air at atmospheric pressure, and compared with their vacuum characteristics. For this purpose, lifetime and IV-characteristics measurements are shown. Furthermore, the GOS-emitter was operated as an ionization source for ion mobility spectrometry (IMS) at ambient conditions. KW - durability KW - graphene compounds KW - ion mobility KW - semiconductor-insulator boundaries Y1 - 2023 SN - 979-8-3503-0143-4 U6 - https://doi.org/10.1109/IVNC57695.2023.10188974 SP - 14 EP - 16 PB - IEEE ER - TY - JOUR A1 - Bachmann, Michael A1 - Düsberg, Felix A1 - Pahlke, Andreas A1 - Edler, Simon A1 - Schels, Andreas A1 - Herdl, Florian A1 - Hausladen, Matthias A1 - Buchner, Philipp A1 - Schreiner, Rupert T1 - The “LED‐version” of the electron gun: An electron source for operation in ambient pressure environments based on silicon field emitter arrays JF - Vakuum in Forschung und Praxis N2 - We report on our progress to develop and optimize electron sources for practical applications. A simple fabrication process is introduced based on a wafer dicing saw and a wet chemical etch step without the need for a clean room. Due to the formation of crystal facets the samples show a homogeneous geometry throughout the array. Characterization techniques are developed to systematically compare various arrays. A very defined measurement procedure based on current controlled IV-sweeps as well as lifetime measurements at various currents is proposed. To investigate the current distribution in the array a commercial CMOS detector is used and shows the potential for in depth analysis of the arrays. Finally, a compact hermetically sealed housing is presented enabling electron generation in atmospheric pressure environments. Y1 - 2023 U6 - https://doi.org/10.1002/vipr.202300801 VL - 35 IS - 3 SP - 32 EP - 37 PB - Wiley ER -