TY - JOUR A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Probst, Andreas A1 - Manzeneder, Johannes A1 - De Souza Jr., Luis Antonio A1 - Papa, João Paulo A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Computer-aided diagnosis using deep learning in the evaluation of early oesophageal adenocarcinoma JF - GuT N2 - Computer-aided diagnosis using deep learning (CAD-DL) may be an instrument to improve endoscopic assessment of Barrett’s oesophagus (BE) and early oesophageal adenocarcinoma (EAC). Based on still images from two databases, the diagnosis of EAC by CAD-DL reached sensitivities/specificities of 97%/88% (Augsburg data) and 92%/100% (Medical Image Computing and Computer-Assisted Intervention [MICCAI] data) for white light (WL) images and 94%/80% for narrow band images (NBI) (Augsburg data), respectively. Tumour margins delineated by experts into images were detected satisfactorily with a Dice coefficient (D) of 0.72. This could be a first step towards CAD-DL for BE assessment. If developed further, it could become a useful adjunctive tool for patient management. KW - Speiseröhrenkrebs KW - Diagnose KW - Computerunterstütztes Verfahren KW - Maschinelles Lernen Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-68 N1 - Corresponding authors: Alanna Ebigbo and Christoph Palm VL - 68 IS - 7 SP - 1143 EP - 1145 PB - British Society of Gastroenterology ER - TY - JOUR A1 - Passos, Leandro A. A1 - De Souza Jr., Luis Antonio A1 - Mendel, Robert A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Papa, João Paulo T1 - Barrett's esophagus analysis using infinity Restricted Boltzmann Machines JF - Journal of Visual Communication and Image Representation N2 - The number of patients with Barret’s esophagus (BE) has increased in the last decades. Considering the dangerousness of the disease and its evolution to adenocarcinoma, an early diagnosis of BE may provide a high probability of cancer remission. However, limitations regarding traditional methods of detection and management of BE demand alternative solutions. As such, computer-aided tools have been recently used to assist in this problem, but the challenge still persists. To manage the problem, we introduce the infinity Restricted Boltzmann Machines (iRBMs) to the task of automatic identification of Barrett’s esophagus from endoscopic images of the lower esophagus. Moreover, since iRBM requires a proper selection of its meta-parameters, we also present a discriminative iRBM fine-tuning using six meta-heuristic optimization techniques. We showed that iRBMs are suitable for the context since it provides competitive results, as well as the meta-heuristic techniques showed to be appropriate for such task. KW - Speiseröhrenkrankheit KW - Diagnose KW - Boltzmann-Maschine KW - Barrett’s esophagus KW - Infinity Restricted Boltzmann Machines KW - Meta-heuristics KW - Deep learning KW - Metaheuristik KW - Maschinelles Lernen Y1 - 2019 U6 - https://doi.org/10.1016/j.jvcir.2019.01.043 VL - 59 SP - 475 EP - 485 PB - Elsevier ER - TY - GEN A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Probst, Andreas A1 - Manzeneder, Johannes A1 - De Souza Jr., Luis Antonio A1 - Papa, João Paulo A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Artificial Intelligence in Early Barrett's Cancer: The Segmentation Task T2 - Endoscopy N2 - Aims: The delineation of outer margins of early Barrett's cancer can be challenging even for experienced endoscopists. Artificial intelligence (AI) could assist endoscopists faced with this task. As of date, there is very limited experience in this domain. In this study, we demonstrate the measure of overlap (Dice coefficient = D) between highly experienced Barrett endoscopists and an AI system in the delineation of cancer margins (segmentation task). Methods: An AI system with a deep convolutional neural network (CNN) was trained and tested on high-definition endoscopic images of early Barrett's cancer (n = 33) and normal Barrett's mucosa (n = 41). The reference standard for the segmentation task were the manual delineations of tumor margins by three highly experienced Barrett endoscopists. Training of the AI system included patch generation, patch augmentation and adjustment of the CNN weights. Then, the segmentation results from patch classification and thresholding of the class probabilities. Segmentation results were evaluated using the Dice coefficient (D). Results: The Dice coefficient (D) which can range between 0 (no overlap) and 1 (complete overlap) was computed only for images correctly classified by the AI-system as cancerous. At a threshold of t = 0.5, a mean value of D = 0.72 was computed. Conclusions: AI with CNN performed reasonably well in the segmentation of the tumor region in Barrett's cancer, at least when compared with expert Barrett's endoscopists. AI holds a lot of promise as a tool for better visualization of tumor margins but may need further improvement and enhancement especially in real-time settings. KW - Speiseröhrenkrankheit KW - Maschinelles Lernen KW - Barrett's esphagus KW - Deep Learning KW - Segmentation Y1 - 2019 U6 - https://doi.org/10.1055/s-0039-1681187 VL - 51 IS - 04 SP - 6 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Palm, Christoph A1 - Probst, Andreas A1 - Mendel, Robert A1 - Manzeneder, Johannes A1 - Prinz, Friederike A1 - De Souza Jr., Luis Antonio A1 - Papa, João Paulo A1 - Siersema, Peter A1 - Messmann, Helmut T1 - A technical review of artificial intelligence as applied to gastrointestinal endoscopy: clarifying the terminology JF - Endoscopy International Open N2 - The growing number of publications on the application of artificial intelligence (AI) in medicine underlines the enormous importance and potential of this emerging field of research. In gastrointestinal endoscopy, AI has been applied to all segments of the gastrointestinal tract most importantly in the detection and characterization of colorectal polyps. However, AI research has been published also in the stomach and esophagus for both neoplastic and non-neoplastic disorders. The various technical as well as medical aspects of AI, however, remain confusing especially for non-expert physicians. This physician-engineer co-authored review explains the basic technical aspects of AI and provides a comprehensive overview of recent publications on AI in gastrointestinal endoscopy. Finally, a basic insight is offered into understanding publications on AI in gastrointestinal endoscopy. KW - Diagnose KW - Maschinelles Lernen KW - Gastroenterologie KW - Künstliche Intelligenz KW - Barrett's esophagus KW - Deep learning Y1 - 2019 U6 - https://doi.org/10.1055/a-1010-5705 VL - 07 IS - 12 SP - 1616 EP - 1623 PB - Georg Thieme Verlag CY - Stuttgart ER -