TY - GEN A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Scheppach, Markus W. A1 - Probst, Andreas A1 - Prinz, Friederike A1 - Schwamberger, Tanja A1 - Schlottmann, Jakob A1 - Gölder, Stefan Karl A1 - Walter, Benjamin A1 - Steinbrück, Ingo A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - INFLUENCE OF AN ARTIFICIAL INTELLIGENCE (AI) BASED DECISION SUPPORT SYSTEM (DSS) ON THE DIAGNOSTIC PERFORMANCE OF NON-EXPERTS IN BARRETT´S ESOPHAGUS RELATED NEOPLASIA (BERN) T2 - Endoscopy N2 - Aims Barrett´s esophagus related neoplasia (BERN) is difficult to detect and characterize during endoscopy, even for expert endoscopists. We aimed to assess the add-on effect of an Artificial Intelligence (AI) algorithm (Barrett-Ampel) as a decision support system (DSS) for non-expert endoscopists in the evaluation of Barrett’s esophagus (BE) and BERN. Methods Twelve videos with multimodal imaging white light (WL), narrow-band imaging (NBI), texture and color enhanced imaging (TXI) of histologically confirmed BE and BERN were assessed by expert and non-expert endoscopists. For each video, endoscopists were asked to identify the area of BERN and decide on the biopsy spot. Videos were assessed by the AI algorithm and regions of BERN were highlighted in real-time by a transparent overlay. Finally, endoscopists were shown the AI videos and asked to either confirm or change their initial decision based on the AI support. Results Barrett-Ampel correctly identified all areas of BERN, irrespective of the imaging modality (WL, NBI, TXI), but misinterpreted two inflammatory lesions (Accuracy=75%). Expert endoscopists had a similar performance (Accuracy=70,8%), while non-experts had an accuracy of 58.3%. When AI was implemented as a DSS, non-expert endoscopists improved their diagnostic accuracy to 75%. Conclusions AI may have the potential to support non-expert endoscopists in the assessment of videos of BE and BERN. Limitations of this study include the low number of videos used. Randomized clinical trials in a real-life setting should be performed to confirm these results. KW - Artificial Intelligence KW - Barrett's Esophagus KW - Speiseröhrenkrankheit KW - Künstliche Intelligenz KW - Diagnose Y1 - 2022 U6 - https://doi.org/10.1055/s-00000012 VL - 54 IS - S 01 SP - S39 PB - Thieme ER - TY - JOUR A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - ARTIFICIAL INTELLIGENCE (AI) – ASSISTED VESSEL AND TISSUE RECOGNITION IN THIRD-SPACE ENDOSCOPY JF - Endoscopy N2 - Aims Third-space endoscopy procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex interventions with elevated risk of operator-dependent adverse events, such as intra-procedural bleeding and perforation. We aimed to design an artificial intelligence clinical decision support solution (AI-CDSS, “Smart ESD”) for the detection and delineation of vessels, tissue structures, and instruments during third-space endoscopy procedures. Methods Twelve full-length third-space endoscopy videos were extracted from the Augsburg University Hospital database. 1686 frames were annotated for the following categories: Submucosal layer, blood vessels, electrosurgical knife and endoscopic instrument. A DeepLabv3+neural network with a 101-layer ResNet backbone was trained and validated internally. Finally, the ability of the AI system to detect visible vessels during ESD and POEM was determined on 24 separate video clips of 7 to 46 seconds duration and showing 33 predefined vessels. These video clips were also assessed by an expert in third-space endoscopy. Results Smart ESD showed a vessel detection rate (VDR) of 93.94%, while an average of 1.87 false positive signals were recorded per minute. VDR of the expert endoscopist was 90.1% with no false positive findings. On the internal validation data set using still images, the AI system demonstrated an Intersection over Union (IoU), mean Dice score and pixel accuracy of 63.47%, 76.18% and 86.61%, respectively. Conclusions This is the first AI-CDSS aiming to mitigate operator-dependent limitations during third-space endoscopy. Further clinical trials are underway to better understand the role of AI in such procedures. KW - Artificial Intelligence KW - Third-Space Endoscopy KW - Smart ESD Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1745037 VL - 54 IS - S01 SP - S175 PB - Thieme ER - TY - GEN A1 - Scheppach, Markus W. A1 - Rauber, David A1 - Mendel, Robert A1 - Palm, Christoph A1 - Byrne, Michael F. A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Detection Of Celiac Disease Using A Deep Learning Algorithm T2 - Endoscopy N2 - Aims Celiac disease (CD) is a complex condition caused by an autoimmune reaction to ingested gluten. Due to its polymorphic manifestation and subtle endoscopic presentation, the diagnosis is difficult and thus the disorder is underreported. We aimed to use deep learning to identify celiac disease on endoscopic images of the small bowel. Methods Patients with small intestinal histology compatible with CD (MARSH classification I-III) were extracted retrospectively from the database of Augsburg University hospital. They were compared to patients with no clinical signs of CD and histologically normal small intestinal mucosa. In a first step MARSH III and normal small intestinal mucosa were differentiated with the help of a deep learning algorithm. For this, the endoscopic white light images were divided into five equal-sized subsets. We avoided splitting the images of one patient into several subsets. A ResNet-50 model was trained with the images from four subsets and then validated with the remaining subset. This process was repeated for each subset, such that each subset was validated once. Sensitivity, specificity, and harmonic mean (F1) of the algorithm were determined. Results The algorithm showed values of 0.83, 0.88, and 0.84 for sensitivity, specificity, and F1, respectively. Further data showing a comparison between the detection rate of the AI model and that of experienced endoscopists will be available at the time of the upcoming conference. Conclusions We present the first clinical report on the use of a deep learning algorithm for the detection of celiac disease using endoscopic images. Further evaluation on an external data set, as well as in the detection of CD in real-time, will follow. However, this work at least suggests that AI can assist endoscopists in the endoscopic diagnosis of CD, and ultimately may be able to do a true optical biopsy in live-time. KW - Celiac Disease KW - Deep Learning Y1 - 2021 U6 - https://doi.org/10.1055/s-0041-1724970 N1 - Digital poster exhibition VL - 53 IS - S 01 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - CHAP A1 - Rauber, David A1 - Mendel, Robert A1 - Scheppach, Markus W. A1 - Ebigbo, Alanna A1 - Messmann, Helmut A1 - Palm, Christoph T1 - Analysis of Celiac Disease with Multimodal Deep Learning T2 - Bildverarbeitung für die Medizin 2022: Proceedings, German Workshop on Medical Image Computing, Heidelberg, June 26-28, 2022 N2 - Celiac disease is an autoimmune disorder caused by gluten that results in an inflammatory response of the small intestine.We investigated whether celiac disease can be detected using endoscopic images through a deep learning approach. The results show that additional clinical parameters can improve the classification accuracy. In this work, we distinguished between healthy tissue and Marsh III, according to the Marsh score system. We first trained a baseline network to classify endoscopic images of the small bowel into these two classes and then augmented the approach with a multimodality component that took the antibody status into account. KW - Deep Learning KW - Endoscopy Y1 - 2022 U6 - https://doi.org/10.1007/978-3-658-36932-3_25 SP - 115 EP - 120 PB - Springer Vieweg CY - Wiesbaden ER - TY - GEN A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Scheppach, Markus W. A1 - Probst, Andreas A1 - Prinz, Friederike A1 - Schwamberger, Tanja A1 - Schlottmann, Jakob A1 - Gölder, Stefan Karl A1 - Walter, Benjamin A1 - Steinbrück, Ingo A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Einsatz von künstlicher Intelligenz (KI) als Entscheidungsunterstützungssystem für nicht-Experten bei der Beurteilung von Barrett-Ösophagus assoziierten Neoplasien (BERN) T2 - Zeitschrift für Gastroenterologie N2 - Einleitung Die sichere Detektion und Charakterisierung von Barrett-Ösophagus assoziierten Neoplasien (BERN) stellt selbst für erfahrene Endoskopiker eine Herausforderung dar. Ziel Ziel dieser Studie ist es, den Add-on Effekt eines künstlichen Intelligenz (KI) Systems (Barrett-Ampel) als Entscheidungsunterstüzungssystem für Endoskopiker ohne Expertise bei der Untersuchung von BERN zu evaluieren. Material und Methodik Zwölf Videos in „Weißlicht“ (WL), „narrow-band imaging“ (NBI) und „texture and color enhanced imaging“ (TXI) von histologisch bestätigten Barrett-Metaplasien oder BERN wurden von Experten und Untersuchern ohne Barrett-Expertise evaluiert. Die Probanden wurden dazu aufgefordert in den Videos auftauchende BERN zu identifizieren und gegebenenfalls die optimale Biopsiestelle zu markieren. Unser KI-System wurde demselben Test unterzogen, wobei dieses BERN in Echtzeit segmentierte und farblich von umliegendem Epithel differenzierte. Anschließend wurden den Probanden die Videos mit zusätzlicher KI-Unterstützung gezeigt. Basierend auf dieser neuen Information, wurden die Probanden zu einer Reevaluation ihrer initialen Beurteilung aufgefordert. Ergebnisse Die „Barrett-Ampel“ identifizierte unabhängig von den verwendeten Darstellungsmodi (WL, NBI, TXI) alle BERN. Zwei entzündlich veränderte Läsionen wurden fehlinterpretiert (Genauigkeit=75%). Während Experten vergleichbare Ergebnisse erzielten (Genauigkeit=70,8%), hatten Endoskopiker ohne Expertise bei der Beurteilung von Barrett-Metaplasien eine Genauigkeit von lediglich 58,3%. Wurden die nicht-Experten allerdings von unserem KI-System unterstützt, erreichten diese eine Genauigkeit von 75%. Zusammenfassung Unser KI-System hat das Potential als Entscheidungsunterstützungssystem bei der Differenzierung zwischen Barrett-Metaplasie und BERN zu fungieren und so Endoskopiker ohne entsprechende Expertise zu assistieren. Eine Limitation dieser Studie ist die niedrige Anzahl an eingeschlossenen Videos. Um die Ergebnisse dieser Studie zu bestätigen, müssen randomisierte kontrollierte klinische Studien durchgeführt werden. KW - Barrett-Ösophagus KW - Künstliche Intelligenz Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1745653 VL - 60 IS - 4 SP - 251 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Intraprozedurale Strukturerkennung bei Third-Space Endoskopie mithilfe eines Deep-Learning Algorithmus T2 - Zeitschrift für Gastroenterologie N2 - Einleitung Third-Space Interventionen wie die endoskopische Submukosadissektion (ESD) und die perorale endoskopische Myotomie (POEM) sind technisch anspruchsvoll und mit einem erhöhten Risiko für intraprozedurale Komplikationen wie Blutung oder Perforation assoziiert. Moderne Computerprogramme zur Unterstützung bei diagnostischen Entscheidungen werden unter Einsatz von künstlicher Intelligenz (KI) in der Endoskopie bereits erfolgreich eingesetzt. Ziel der vorliegenden Arbeit war es, relevante anatomische Strukturen mithilfe eines Deep-Learning Algorithmus zu detektieren und segmentieren, um die Sicherheit und Anwendbarkeit von ESD und POEM zu erhöhen. Methoden Zwölf Videoaufnahmen in voller Länge von Third-Space Endoskopien wurden aus der Datenbank des Universitätsklinikums Augsburg extrahiert. 1686 Einzelbilder wurden für die Kategorien Submukosa, Blutgefäß, Dissektionsmesser und endoskopisches Instrument annotiert und segmentiert. Mit diesem Datensatz wurde ein DeepLabv3+neuronales Netzwerk auf der Basis eines ResNet mit 101 Schichten trainiert und intern anhand der Parameter Intersection over Union (IoU), Dice Score und Pixel Accuracy validiert. Die Fähigkeit des Algorithmus zur Gefäßdetektion wurde anhand von 24 Videoclips mit einer Spieldauer von 7 bis 46 Sekunden mit 33 vordefinierten Gefäßen evaluiert. Anhand dieses Tests wurde auch die Gefäßdetektionsrate eines Experten in der Third-Space Endoskopie ermittelt. Ergebnisse Der Algorithmus zeigte eine Gefäßdetektionsrate von 93,94% mit einer mittleren Rate an falsch positiven Signalen von 1,87 pro Minute. Die Gefäßdetektionsrate des Experten lag bei 90,1% ohne falsch positive Ergebnisse. In der internen Validierung an Einzelbildern wurde eine IoU von 63,47%, ein mittlerer Dice Score von 76,18% und eine Pixel Accuracy von 86,61% ermittelt. Zusammenfassung Dies ist der erste KI-Algorithmus, der für den Einsatz in der therapeutischen Endoskopie entwickelt wurde. Präliminäre Ergebnisse deuten auf eine mit Experten vergleichbare Detektion von Gefäßen während der Untersuchung hin. Weitere Untersuchungen sind nötig, um die Leistung des Algorithmus im Vergleich zum Experten genauer zu eruieren sowie einen möglichen klinischen Nutzen zu ermitteln. KW - Deep Learning KW - Third-Space Endoscopy Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1745652 VL - 60 IS - 04 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Nagl, Sandra A1 - Meinikheim, Michael A1 - Yip, Hon Chi A1 - Lau, Louis Ho Shing A1 - Chiu, Philip Wai Yan A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Effekt eines Künstliche Intelligenz (KI) – Algorithmus auf die Gefäßdetektion bei third space Endoskopien T2 - Zeitschrift für Gastroenterologie N2 - Einleitung  Third space Endoskopieprozeduren wie die endoskopische Submukosadissektion (ESD) und die perorale endoskopische Myotomie (POEM) sind technisch anspruchsvoll und gehen mit untersucherabhängigen Komplikationen wie Blutungen und Perforationen einher. Grund hierfür ist die unabsichtliche Durchschneidung von submukosalen Blutgefäßen ohne präemptive Koagulation. Ziele Die Forschungsfrage, ob ein KI-Algorithmus die intraprozedurale Gefäßerkennung bei ESD und POEM unterstützen und damit Komplikationen wie Blutungen verhindern könnte, erscheint in Anbetracht des erfolgreichen Einsatzes von KI bei der Erkennung von Kolonpolypen interessant. Methoden  Auf 5470 Einzelbildern von 59 third space Endoscopievideos wurden submukosale Blutgefäße annotiert. Zusammen mit weiteren 179.681 nicht-annotierten Bildern wurde ein DeepLabv3+neuronales Netzwerk mit dem ECMT-Verfahren für semi-supervised learning trainiert, um Blutgefäße in Echtzeit erkennen zu können. Für die Evaluation wurde ein Videotest mit 101 Videoclips aus 15 vom Trainingsdatensatz separaten Prozeduren mit 200 vordefinierten Gefäßen erstellt. Die Gefäßdetektionsrate, -zeit und -dauer, definiert als der Prozentsatz an Einzelbildern eines Videos bezogen auf den Goldstandard, auf denen ein definiertes Gefäß erkannt wurde, wurden erhoben. Acht erfahrene Endoskopiker wurden mithilfe dieses Videotests im Hinblick auf Gefäßdetektion getestet, wobei eine Hälfte der Videos nativ, die andere Hälfte nach Markierung durch den KI-Algorithmus angesehen wurde. Ergebnisse  Der mittlere Dice Score des Algorithmus für Blutgefäße war 68%. Die mittlere Gefäßdetektionsrate im Videotest lag bei 94% (96% für ESD; 74% für POEM). Die mediane Gefäßdetektionszeit des Algorithmus lag bei 0,32 Sekunden (0,3 Sekunden für ESD; 0,62 Sekunden für POEM). Die mittlere Gefäßdetektionsdauer lag bei 59,1% (60,6% für ESD; 44,8% für POEM) des Goldstandards. Alle Endoskopiker hatten mit KI-Unterstützung eine höhere Gefäßdetektionsrate als ohne KI. Die mittlere Gefäßdetektionsrate ohne KI lag bei 56,4%, mit KI bei 71,2% (p<0.001). Schlussfolgerung  KI-Unterstützung war mit einer statistisch signifikant höheren Gefäßdetektionsrate vergesellschaftet. Die mediane Gefäßdetektionszeit von deutlich unter einer Sekunde sowie eine Gefäßdetektionsdauer von größer 50% des Goldstandards wurden für den klinischen Einsatz als ausreichend erachtet. In prospektiven Anwendungsstudien sollte der KI-Algorithmus auf klinische Relevanz getestet werden. KW - Künstliche Intelligenz Y1 - 2023 U6 - https://doi.org/10.1055/s-0043-1771980 VL - 61 IS - 08 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Probst, Andreas A1 - Scheppach, Markus W. A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Ebigbo, Alanna T1 - Barrett-Ampel T2 - Zeitschrift für Gastroenterologie N2 - Hintergrund  Adenokarzinome des Ösophagus sind bis heute mit einer infausten Prognose vergesellschaftet (1). Obwohl Endoskopiker mit Barrett-Ösophagus als Präkanzerose konfrontiert werden, ist vor allem für nicht-Experten die Differenzierung zwischen Barrett-Ösophagus ohne Dysplasie und assoziierten Neoplasien mitunter schwierig. Existierende Biopsieprotokolle (z.B. Seattle Protokoll) sind oftmals unzuverlässig (2). Eine frühzeitige Diagnose des Adenokarzinoms ist allerdings von fundamentaler Bedeutung für die Prognose des Patienten. Forschungsansatz  Auf der Grundlage dieser Problematik, entwickelten wir in Kooperation mit dem Forschungslabor „Regensburg Medical Image Computing (ReMIC)“ der OTH Regensburg ein auf künstlicher Intelligenz (KI) basiertes Entscheidungsunterstützungssystem (CDSS). Das auf einer DeepLabv3+ neuronalen Netzwerkarchitektur basierende CDSS differenziert mittels Mustererkennung Barrett- Ösophagus ohne Dysplasie von Barrett-Ösophagus mit Dysplasie bzw. Neoplasie („Klassifizierung“). Hierbei werden gemittelte Ausgabewahrscheinlichkeiten mit einem vom Benutzer definierten Schwellenwert verglichen. Für Vorhersagen, die den Schwellenwert überschreiten, berechnen wir die Kontur der Region und die Fläche. Sobald die vorhergesagte Läsion eine bestimmte Größe in der Eingabe überschreitet, heben wir sie und ihren Umriss hervor. So ermöglicht eine farbkodierte Visualisierung eine Abgrenzung zwischen Dysplasie bzw. Neoplasie und normalem Barrett-Epithel („Segmentierung“). In einer Studie an Bildern in „Weißlicht“ (WL) und „Narrow Band Imaging“ (NBI) demonstrierten wir eine Sensitivität von mehr als 90% und eine Spezifität von mehr als 80% (3). In einem nächsten Schritt, differenzierte unser KI-Algorithmus Barrett- Metaplasien von assoziierten Neoplasien anhand von zufällig abgegriffenen Bildern in Echtzeit mit einer Accuracy von 89.9% (4). Darauf folgend, entwickelten wir unser System dahingehend weiter, dass unser Algorithmus nun auch dazu in der Lage ist, Untersuchungsvideos in WL, NBI und „Texture and Color Enhancement Imaging“ (TXI) in Echtzeit zu analysieren (5). Aktuell führen wir eine Studie in einem randomisiert-kontrollierten Ansatz an unveränderten Untersuchungsvideos in WL, NBI und TXI durch. Ausblick  Um Patienten mit aus Barrett-Metaplasien resultierenden Neoplasien frühestmöglich an „High-Volume“-Zentren überweisen zu können, soll unser KI-Algorithmus zukünftig vor allem Endoskopiker ohne extensive Erfahrung bei der Beurteilung von Barrett- Ösophagus in der Krebsfrüherkennung unterstützen. KW - Barrett-Ösophagus KW - Adenokarzinom KW - Künstliche Intelligenz KW - Speiseröhrenkrebs KW - Diagnose KW - Künstliche Intelligenz Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1755109 VL - 60 IS - 08 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - GEN A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Probst, Andreas A1 - Scheppach, Markus W. A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Ebigbo, Alanna T1 - Optical Flow als Methode zur Qualitätssicherung KI-unterstützter Untersuchungen von Barrett-Ösophagus und Barrett-Ösophagus assoziierten Neoplasien T2 - Zeitschrift für Gastroenterologie N2 - Einleitung  Übermäßige Bewegung im Bild kann die Performance von auf künstlicher Intelligenz (KI) basierenden klinischen Entscheidungsunterstützungssystemen (CDSS) reduzieren. Optical Flow (OF) ist eine Methode zur Lokalisierung und Quantifizierung von Bewegungen zwischen aufeinanderfolgenden Bildern. Ziel  Ziel ist es, die Mensch-Computer-Interaktion (HCI) zu verbessern und Endoskopiker die unser KI-System „Barrett-Ampel“ zur Unterstützung bei der Beurteilung von Barrett-Ösophagus (BE) verwenden, ein Echtzeit-Feedback zur aktuellen Datenqualität anzubieten. Methodik  Dazu wurden unveränderte Videos in „Weißlicht“ (WL), „Narrow Band Imaging“ (NBI) und „Texture and Color Enhancement Imaging“ (TXI) von acht endoskopischen Untersuchungen von histologisch gesichertem BE und mit Barrett-Ösophagus assoziierten Neoplasien (BERN) durch unseren KI-Algorithmus analysiert. Der zur Bewertung der Bildqualität verwendete OF beinhaltete die mittlere Magnitude und die Entropie des Histogramms der Winkel. Frames wurden automatisch extrahiert, wenn die vordefinierten Schwellenwerte von 3,0 für die mittlere Magnitude und 9,0 für die Entropie des Histogramms der Winkel überschritten wurden. Experten sahen sich zunächst die Videos ohne KI-Unterstützung an und bewerteten, ob Störfaktoren die Sicherheit mit der eine Diagnose im vorliegenden Fall gestellt werden kann negativ beeinflussen. Anschließend überprüften sie die extrahierten Frames. Ergebnis  Gleichmäßige Bewegung in eine Richtung, wie etwa beim Vorschieben des Endoskops, spiegelte sich, bei insignifikant veränderter Entropie, in einer Erhöhung der Magnitude wider. Chaotische Bewegung, zum Beispiel während dem Spülen, war mit erhöhter Entropie assoziiert. Insgesamt war eine unruhige endoskopische Darstellung, Flüssigkeit sowie übermäßige Ösophagusmotilität mit erhöhtem OF assoziiert und korrelierte mit der Meinung der Experten über die Qualität der Videos. Der OF und die subjektive Wahrnehmung der Experten über die Verwertbarkeit der vorliegenden Bildsequenzen korrelierten direkt proportional. Wenn die vordefinierten Schwellenwerte des OF überschritten wurden, war die damit verbundene Bildqualität in 94% der Fälle für eine definitive Interpretation auch für Experten unzureichend. Schlussfolgerung  OF hat das Potenzial Endoskopiker ein Echtzeit-Feedback über die Qualität des Dateninputs zu bieten und so nicht nur die HCI zu verbessern, sondern auch die optimale Performance von KI-Algorithmen zu ermöglichen. KW - Optical Flow Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1754997 VL - 60 IS - 08 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Rauber, David A1 - Rueckert, Tobias A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Real-time detection and delineation of tissue during third-space endoscopy using artificial intelligence (AI) T2 - Endoscopy N2 - Aims  AI has proven great potential in assisting endoscopists in diagnostics, however its role in therapeutic endoscopy remains unclear. Endoscopic submucosal dissection (ESD) is a technically demanding intervention with a slow learning curve and relevant risks like bleeding and perforation. Therefore, we aimed to develop an algorithm for the real-time detection and delineation of relevant structures during third-space endoscopy. Methods  5470 still images from 59 full length videos (47 ESD, 12 POEM) were annotated. 179681 additional unlabeled images were added to the training dataset. Consequently, a DeepLabv3+ neural network architecture was trained with the ECMT semi-supervised algorithm (under review elsewhere). Evaluation of vessel detection was performed on a dataset of 101 standardized video clips from 15 separate third-space endoscopy videos with 200 predefined blood vessels. Results  Internal validation yielded an overall mean Dice score of 85% (68% for blood vessels, 86% for submucosal layer, 88% for muscle layer). On the video test data, the overall vessel detection rate (VDR) was 94% (96% for ESD, 74% for POEM). The median overall vessel detection time (VDT) was 0.32 sec (0.3 sec for ESD, 0.62 sec for POEM). Conclusions  Evaluation of the developed algorithm on a video test dataset showed high VDR and quick VDT, especially for ESD. Further research will focus on a possible clinical benefit of the AI application for VDR and VDT during third-space endoscopy. KW - Speiseröhrenkrankheit KW - Künstliche Intelligenz KW - Artificial Intelligence Y1 - 2023 U6 - https://doi.org/10.1055/s-0043-1765128 VL - 55 IS - S02 SP - S53 EP - S54 PB - Thieme ER -