TY - JOUR A1 - Maier, Andreas A1 - Deserno, Thomas M. A1 - Handels, Heinz A1 - Maier-Hein, Klaus H. A1 - Palm, Christoph A1 - Tolxdorff, Thomas T1 - IJCARS: BVM 2021 special issue JF - International Journal of Computer Assisted Radiology and Surgery N2 - The German workshop on medical image computing (BVM) has been held in different locations in Germany for more than 20 years. In terms of content, BVM focused on the computer-aided analysis of medical image data with a wide range of applications, e.g. in the area of imaging, diagnostics, operation planning, computer-aided intervention and visualization. During this time, there have been remarkable methodological developments and upheavals, on which the BVM community has worked intensively. The area of machine learning should be emphasized, which has led to significant improvements, especially for tasks of classification and segmentation, but increasingly also in image formation and registration. As a result, work in connection with deep learning now dominates the BVM. These developments have also contributed to the establishment of medical image processing at the interface between computer science and medicine as one of the key technologies for the digitization of the health system. In addition to the presentation of current research results, a central aspect of the BVM is primarily the promotion of young scientists from the diverse BVM community, covering not only Germany but also Austria, Switzerland, The Netherland and other European neighbors. The conference serves primarily doctoral students and postdocs, but also students with excellent bachelor and master theses as a platform to present their work, to enter into professional discourse with the community, and to establish networks with specialist colleagues. Despite the many conferences and congresses that are also relevant for medical image processing, the BVM has therefore lost none of its importance and attractiveness and has retained its permanent place in the annual conference rhythm. Building on this foundation, there are some innovations and changes this year. The BVM 2021 was organized for the first time at the Ostbayerische Technische Hochschule Regensburg (OTH Regensburg, a technical university of applied sciences). After Aachen, Berlin, Erlangen, Freiburg, Hamburg, Heidelberg, Leipzig, Lübeck, and Munich, Regensburg is not just a new venue. OTH Regensburg is the first representative of the universities of applied sciences (HAW) to organize the conference, which differs to universities, university hospitals, or research centers like Fraunhofer or Helmholtz. This also considers the further development of the research landscape in Germany, where HAWs increasingly contribute to applied research in addition to their focus on teaching. This development is also reflected in the contributions submitted to the BVM in recent years. At BVM 2021, which was held in a virtual format for the first time due to the Corona pandemic, an attractive and high-quality program was offered. Fortunately, the number of submissions increased significantly. Out of 97 submissions, 26 presentations, 51 posters and 5 software demonstrations were accepted via an anonymized reviewing process with three reviews each. The three best works have been awarded BVM prizes, selected by a separate committee. Based on these high-quality submissions, we are able to present another special issue in the International Journal of Computer Assisted Radiology and Surgery (IJCARS). Out of the 97 submissions, the ones with the highest scores have been invited to submit an extended version of their paper to be presented in IJCARS. As a result, we are now able to present this special issue with seven excellent articles. Many submissions focus on machine learning in a medical context. KW - Medical Image Computing KW - Bildgebendes Verfahren KW - Medizin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-21666 VL - 16 SP - 2067 EP - 2068 PB - Springer ER - TY - JOUR A1 - Maier, Johannes A1 - Weiherer, Maximilian A1 - Huber, Michaela A1 - Palm, Christoph T1 - Imitating human soft tissue on basis of a dual-material 3D print using a support-filled metamaterial to provide bimanual haptic for a hand surgery training system JF - Quantitative Imaging in Medicine and Surgery N2 - Background: Currently, it is common practice to use three-dimensional (3D) printers not only for rapid prototyping in the industry, but also in the medical area to create medical applications for training inexperienced surgeons. In a clinical training simulator for minimally invasive bone drilling to fix hand fractures with Kirschner-wires (K-wires), a 3D-printed hand phantom must not only be geometrically but also haptically correct. Due to a limited view during an operation, surgeons need to perfectly localize underlying risk structures only by feeling of specific bony protrusions of the human hand. Methods: The goal of this experiment is to imitate human soft tissue with its haptic and elasticity for a realistic hand phantom fabrication, using only a dual-material 3D printer and support-material-filled metamaterial between skin and bone. We present our workflow to generate lattice structures between hard bone and soft skin with iterative cube edge (CE) or cube face (CF) unit cells. Cuboid and finger shaped sample prints with and without inner hard bone in different lattice thickness are constructed and 3D printed. Results: The most elastic available rubber-like material is too firm to imitate soft tissue. By reducing the amount of rubber in the inner volume through support material (SUP), objects become significantly softer. Without metamaterial, after disintegration, the SUP can be shifted through the volume and thus the body loses its original shape. Although the CE design increases the elasticity, it cannot restore the fabric form. In contrast to CE, the CF design increases not only the elasticity but also guarantees a local limitation of the SUP. Therefore, the body retains its shape and internal bones remain in its intended place. Various unit cell sizes, lattice thickening and skin thickness regulate the rubber material and SUP ratio. Test prints with higher SUP and lower rubber material percentage appear softer and vice versa. This was confirmed by an expert surgeon evaluation. Subjects adjudged pure rubber-like material as too firm and samples only filled with SUP or lattice structure in CE design as not suitable for imitating tissue. 3D-printed finger samples in CF design were rated as realistic compared to the haptic of human tissue with a good palpable bone structure. Conclusions: We developed a new dual-material 3D print technique to imitate soft tissue of the human hand with its haptic properties. Blowy SUP is trapped within a lattice structure to soften rubber-like 3D print material, which makes it possible to reproduce a realistic replica of human hand soft tissue. KW - Dual-material 3D printing KW - Hand surgery training KW - Metamaterial KW - Support material KW - Tissue-imitating hand phantom KW - Handchirurgie KW - 3D-Druck KW - Biomaterial KW - Lernprogramm Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-979 N1 - Corresponding author: Christoph Palm VL - 9 IS - 1 SP - 30 EP - 42 PB - AME Publishing Company ER - TY - CHAP A1 - Weber Nunes, Danilo A1 - Hammer, Michael A1 - Hammer, Simone A1 - Uller, Wibke A1 - Palm, Christoph T1 - Classification of Vascular Malformations Based on T2 STIR Magnetic Resonance Imaging T2 - Bildverarbeitung für die Medizin 2022: Proceedings, German Workshop on Medical Image Computing, Heidelberg, June 26-28, 2022 N2 - Vascular malformations (VMs) are a rare condition. They can be categorized into high-flow and low-flow VMs, which is a challenging task for radiologists. In this work, a very heterogeneous set of MRI images with only rough annotations are used for classification with a convolutional neural network. The main focus is to describe the challenging data set and strategies to deal with such data in terms of preprocessing, annotation usage and choice of the network architecture. We achieved a classification result of 89.47 % F1-score with a 3D ResNet 18. KW - Deep Learning KW - Magnetic Resonance Imaging KW - Vascular Malformations Y1 - 2022 U6 - https://doi.org/10.1007/978-3-658-36932-3_57 SP - 267 EP - 272 PB - Springer Vieweg CY - Wiesbaden ER - TY - GEN A1 - Maier, Johannes A1 - Weiherer, Maximilian A1 - Huber, Michaela A1 - Palm, Christoph ED - Handels, Heinz ED - Deserno, Thomas M. ED - Maier, Andreas ED - Maier-Hein, Klaus H. ED - Palm, Christoph ED - Tolxdorff, Thomas T1 - Abstract: Imitating Human Soft Tissue with Dual-Material 3D Printing T2 - Bildverarbeitung für die Medizin 2019, Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 17. bis 19. März 2019 in Lübeck N2 - Currently, it is common practice to use three-dimensional (3D) printers not only for rapid prototyping in the industry, but also in the medical area to create medical applications for training inexperienced surgeons. In a clinical training simulator for minimally invasive bone drilling to fix hand fractures with Kirschner-wires (K-wires), a 3D printed hand phantom must not only be geometrically but also haptically correct. Due to a limited view during an operation, surgeons need to perfectly localize underlying risk structures only by feeling of specific bony protrusions of the human hand. KW - Handchirurgie KW - 3D-Druck KW - Lernprogramm KW - HaptiVisT Y1 - 2019 SN - 978-3-658-25325-7 U6 - https://doi.org/10.1007/978-3-658-25326-4_48 SP - 218 PB - Springer Vieweg CY - Wiesbaden ER - TY - CHAP A1 - Franz, Daniela A1 - Katzky, Uwe A1 - Neumann, S. A1 - Perret, Jerome A1 - Hofer, Mathias A1 - Huber, Michaela A1 - Schmitt-Rüth, Stephanie A1 - Haug, Sonja A1 - Weber, Karsten A1 - Prinzen, Martin A1 - Palm, Christoph A1 - Wittenberg, Thomas T1 - Haptisches Lernen für Cochlea Implantationen BT - Konzept - HaptiVisT Projekt T2 - 15. Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie (CURAC2016), Tagungsband, 2016, Bern, 29.09. - 01.10. N2 - Die Implantation eines Cochlea Implantates benötigt einen chirurgischen Zugang im Felsenbein und durch die Paukenhöhle des Patienten. Der Chirurg hat eine eingeschränkte Sicht im Operationsgebiet, die weiterhin viele Risikostrukturen enthält. Um eine Cochlea Implantation sicher und fehlerfrei durchzuführen, ist eine umfangreiche theoretische und praktische (teilweise berufsbegleitende) Fortbildung sowie langjährige Erfahrung notwendig. Unter Nutzung von realen klinischen CT/MRT Daten von Innen- und Mittelohr und der interaktiven Segmentierung der darin abgebildeten Strukturen (Nerven, Cochlea, Gehörknöchelchen,...) wird im HaptiVisT Projekt ein haptisch-visuelles Trainingssystem für die Implantation von Innen- und Mittelohr-Implantaten realisiert, das als sog. „Serious Game“ mit immersiver Didaktik gestaltet wird. Die Evaluierung des Demonstrators hinsichtlich Zweckmäßigkeit erfolgt prozessbegleitend und ergebnisorientiert, um mögliche technische oder didaktische Fehler vor Fertigstellung des Systems aufzudecken. Drei zeitlich versetzte Evaluationen fokussieren dabei chirurgisch-fachliche, didaktische sowie haptisch-ergonomische Akzeptanzkriterien. KW - Virtuelles Training KW - Haptisches Feedback KW - Gamification in der Medizin KW - Cochlea-Implantat KW - Operationstechnik KW - Simulation KW - Haptische Feedback-Technologie KW - Lernprogramm Y1 - 2016 UR - https://curac.org/images/advportfoliopro/images/CURAC2016/CURAC%202016%20Tagungsband.pdf SP - 21 EP - 26 ER - TY - JOUR A1 - Hartmann, Robin A1 - Weiherer, Maximilian A1 - Schiltz, Daniel A1 - Seitz, Stephan A1 - Lotter, Luisa A1 - Anker, Alexandra A1 - Palm, Christoph A1 - Prantl, Lukas A1 - Brébant, Vanessa T1 - A Novel Method of Outcome Assessment in Breast Reconstruction Surgery: Comparison of Autologous and Alloplastic Techniques Using Three-Dimensional Surface Imaging JF - Aesthetic Plastic Surgery N2 - Background Breast reconstruction is an important coping tool for patients undergoing a mastectomy. There are numerous surgical techniques in breast reconstruction surgery (BRS). Regardless of the technique used, creating a symmetric outcome is crucial for patients and plastic surgeons. Three-dimensional surface imaging enables surgeons and patients to assess the outcome’s symmetry in BRS. To discriminate between autologous and alloplastic techniques, we analyzed both techniques using objective optical computerized symmetry analysis. Software was developed that enables clinicians to assess optical breast symmetry using three-dimensional surface imaging. Methods Twenty-seven patients who had undergone autologous (n = 12) or alloplastic (n = 15) BRS received three-dimensional surface imaging. Anthropomorphic data were collected digitally using semiautomatic measurements and automatic measurements. Automatic measurements were taken using the newly developed software. To quantify symmetry, a Symmetry Index is proposed. Results Statistical analysis revealed that there is no dif- ference in the outcome symmetry between the two groups (t test for independent samples; p = 0.48, two-tailed). Conclusion This study’s findings provide a foundation for qualitative symmetry assessment in BRS using automatized digital anthropometry. In the present trial, no difference in the outcomes’ optical symmetry was detected between autologous and alloplastic approaches. KW - Breast reconstruction KW - Breast symmetry KW - Digital anthropometry KW - Mammoplastik KW - Dreidimensionale Bildverarbeitung KW - Autogene Transplantation KW - Alloplastik Y1 - 2020 U6 - https://doi.org/10.1007/s00266-020-01749-4 VL - 44 SP - 1980 EP - 1987 PB - Springer CY - Heidelberg ER - TY - CHAP A1 - Weber, Joachim A1 - Doenitz, Christian A1 - Brawanski, Alexander A1 - Palm, Christoph T1 - Data-Parallel MRI Brain Segmentation in Clinicial Use BT - Porting FSL-Fastv4 to GPGPUs T2 - Bildverarbeitung für die Medizin 2015; Algorithmen - Systeme - Anwendungen; Proceedings des Workshops vom 15. bis 17. März 2015 in Lübeck N2 - Structural MRI brain analysis and segmentation is a crucial part in the daily routine in neurosurgery for intervention planning. Exemplarily, the free software FSL-FAST (FMRIB’s Segmentation Library – FMRIB’s Automated Segmentation Tool) in version 4 is used for segmentation of brain tissue types. To speed up the segmentation procedure by parallel execution, we transferred FSL-FAST to a General Purpose Graphics Processing Unit (GPGPU) using Open Computing Language (OpenCL) [1]. The necessary steps for parallelization resulted in substantially different and less useful results. Therefore, the underlying methods were revised and adapted yielding computational overhead. Nevertheless, we achieved a speed-up factor of 3.59 from CPU to GPGPU execution, as well providing similar useful or even better results. KW - Brain Segmentation KW - Magnetic Resonance Imaging KW - Parallel Execution KW - Voxel Spacing KW - General Purpose Graphic Processing Unit KW - Kernspintomografie KW - Gehirn KW - Bildsegmentierung KW - Parallelverarbeitung Y1 - 2015 U6 - https://doi.org/10.1007/978-3-662-46224-9_67 SP - 389 EP - 394 PB - Springer CY - Berlin ER - TY - JOUR A1 - Maier, Johannes A1 - Perret, Jerome A1 - Simon, Martina A1 - Schmitt-Rüth, Stephanie A1 - Wittenberg, Thomas A1 - Palm, Christoph T1 - Force-feedback assisted and virtual fixtures based K-wire drilling simulation JF - Computers in Biology and Medicine N2 - One common method to fix fractures of the human hand after an accident is an osteosynthesis with Kirschner wires (K-wires) to stabilize the bone fragments. The insertion of K-wires is a delicate minimally invasive surgery, because surgeons operate almost without a sight. Since realistic training methods are time consuming, costly and insufficient, a virtual-reality (VR) based training system for the placement of K-wires was developed. As part of this, the current work deals with the real-time bone drilling simulation using a haptic force-feedback device. To simulate the drilling, we introduce a virtual fixture based force-feedback drilling approach. By decomposition of the drilling task into individual phases, each phase can be handled individually to perfectly control the drilling procedure. We report about the related finite state machine (FSM), describe the haptic feedback of each state and explain, how to avoid jerking of the haptic force-feedback during state transition. The usage of the virtual fixture approach results in a good haptic performance and a stable drilling behavior. This was confirmed by 26 expert surgeons, who evaluated the virtual drilling on the simulator and rated it as very realistic. To make the system even more convincing, we determined real drilling feed rates through experimental pig bone drilling and transferred them to our system. Due to a constant simulation thread we can guarantee a precise drilling motion. Virtual fixtures based force-feedback calculation is able to simulate force-feedback assisted bone drilling with high quality and, thus, will have a great potential in developing medical applications. KW - Handchirurgie KW - Osteosynthese KW - Operationstechnik KW - Lernprogramm KW - Virtuelle Realität KW - Medical training system KW - Virtual fixtures KW - Virtual reality KW - Force-feedback haptic KW - Minimally invasive hand surgery KW - K-wire drilling Y1 - 2019 U6 - https://doi.org/10.1016/j.compbiomed.2019.103473 N1 - Corresponding author: Christoph Palm VL - 114 SP - 1 EP - 10 PB - Elsevier ER - TY - CHAP A1 - De Souza Jr., Luis Antonio A1 - Afonso, Luis Claudio Sugi A1 - Palm, Christoph A1 - Papa, João Paulo T1 - Barrett's Esophagus Identification Using Optimum-Path Forest T2 - Proceedings of the 30th Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T 2017), Niterói, Rio de Janeiro, Brazil, 2017, 17-20 October N2 - Computer-assisted analysis of endoscopic images can be helpful to the automatic diagnosis and classification of neoplastic lesions. Barrett's esophagus (BE) is a common type of reflux that is not straight forward to be detected by endoscopic surveillance, thus being way susceptible to erroneous diagnosis, which can cause cancer when not treated properly. In this work, we introduce the Optimum-Path Forest (OPF) classifier to the task of automatic identification of Barrett'sesophagus, with promising results and outperforming the well known Support Vector Machines (SVM) in the aforementioned context. We consider describing endoscopic images by means of feature extractors based on key point information, such as the Speeded up Robust Features (SURF) and Scale-Invariant Feature Transform (SIFT), for further designing a bag-of-visual-wordsthat is used to feed both OPF and SVM classifiers. The best results were obtained by means of the OPF classifier for both feature extractors, with values lying on 0.732 (SURF) - 0.735(SIFT) for sensitivity, 0.782 (SURF) - 0.806 (SIFT) for specificity, and 0.738 (SURF) - 0.732 (SIFT) for the accuracy. KW - Speiseröhrenkrankheit KW - Diagnose KW - Maschinelles Lernen KW - Bilderkennung KW - Automatische Klassifikation Y1 - 2017 U6 - https://doi.org/10.1109/SIBGRAPI.2017.47 SP - 308 EP - 314 ER - TY - CHAP A1 - Palm, Christoph A1 - Siegmund, Heiko A1 - Semmelmann, Matthias A1 - Grafe, Claudia A1 - Evert, Matthias A1 - Schroeder, Josef A. T1 - Interactive Computer-assisted Approach for Evaluation of Ultrastructural Cilia Abnormalities T2 - Medical Imaging 2016: Computer-Aided Diagnosis, San Diego, California, United States, 27 February - 3 March, SPIE Proceedings 97853N, 2016, ISBN 9781510600201 N2 - Introduction – Diagnosis of abnormal cilia function is based on ultrastructural analysis of axoneme defects, especialy the features of inner and outer dynein arms which are the motors of ciliar motility. Sub-optimal biopsy material, methodical, and intrinsic electron microscopy factors pose difficulty in ciliary defects evaluation. We present a computer-assisted approach based on state-of-the-art image analysis and object recognition methods yielding a time-saving and efficient diagnosis of cilia dysfunction. Method – The presented approach is based on a pipeline of basal image processing methods like smoothing, thresholding and ellipse fitting. However, integration of application specific knowledge results in robust segmentations even in cases of image artifacts. The method is build hierarchically starting with the detection of cilia within the image, followed by the detection of nine doublets within each analyzable cilium, and ending with the detection of dynein arms of each doublet. The process is concluded by a rough classification of the dynein arms as basis for a computer-assisted diagnosis. Additionally, the interaction possibilities are designed in a way, that the results are still reproducible given the completion report. Results – A qualitative evaluation showed reasonable detection results for cilia, doublets and dynein arms. However, since a ground truth is missing, the variation of the computer-assisted diagnosis should be within the subjective bias of human diagnosticians. The results of a first quantitative evaluation with five human experts and six images with 12 analyzable cilia showed, that with default parameterization 91.6% of the cilia and 98% of the doublets were found. The computer-assisted approach rated 66% of those inner and outer dynein arms correct, where all human experts agree. However, especially the quality of the dynein arm classification may be improved in future work. KW - Image analysis KW - Image processing KW - Computer aided diagnosis and therapy KW - Image classification KW - Image segmentation KW - Biopsy KW - Electron microscopy KW - Zilie KW - Ultrastruktur KW - Anomalie KW - Bildverarbeitung KW - Objekterkennung KW - Computerunterstütztes Verfahren Y1 - 2016 U6 - https://doi.org/10.1117/12.2214976 ER -