TY - JOUR A1 - Belyaeva, Inna A. A1 - Kramarenko, Elena Yu A1 - Shamonin (Chamonine), Mikhail T1 - Magnetodielectric effect in magnetoactive elastomers: Transient response and hysteresis JF - POLYMER N2 - Magnetodielectric properties of magnetoactive elastomers comprising micrometer-sized iron particles dispersed in compliant elastomer matrices are experimentally studied in stepwise time-varying dc magnetic fields. It is found that imposition of magnetic field significantly increases both the effective lossless permittivity of these composite materials as well as their effective conductivity. These magnetodielectric effects are more pronounced for larger concentrations of soft-magnetic filler particles and softer elastomer matrices. The largest observed relative change of the effective dielectric constant in the maximum magnetic field of 0.57 T is of the order of 1000%. The largest observed absolute change of the loss tangent is approximately 0.8. The transient response of the magnetodielectric effect to a step magnetic-field excitation can be rather complex. It changes from a simple monotonic growth with time for small magnetic-field steps (<0.1 T) to a non-monotonic behavior with a significant rapidly appearing overshoot for large magnetic-field steps (>0.3 T). The settling time to the magnetic-field step excitation can reach roughly 1000 s and it depends on the applied magnetic field and sample composition. There is also significant hysteresis of the magnetodielectric effect on the externally applied magnetic field. These findings are attributed to the rearrangement of ferromagnetic filler particles in external magnetic fields. The results will be useful for understanding and predicting the transient behavior of magnetoactive elastomers in applications where the control magnetic field is time dependent. (C) 2017 Elsevier Ltd. All rights reserved. KW - BEHAVIOR KW - composites KW - DIELECTRIC-PROPERTIES KW - hysteresis KW - MAGNETIC-FIELD KW - magnetoactive elastomer KW - magnetodielectric effect KW - Magnetorhelogical elastomer KW - MELT STATE KW - MICROSTRUCTURE KW - POLYMER DEGRADATION KW - PROGRESS KW - Smart material KW - THERMOOXIDATIVE DEGRADATION KW - TIME-RESOLVED RHEOLOGY KW - Transient response Y1 - 2017 U6 - https://doi.org/10.1016/j.polymer.2017.08.056 VL - 127 SP - 119 EP - 128 PB - ELSEVIER ER - TY - JOUR A1 - Sorokin, Vladislav V. A1 - Belyaeva, Inna A. A1 - Shamonin (Chamonine), Mikhail A1 - Kramarenko, Elena Yu T1 - Magnetorheological response of highly filled magnetoactive elastomers from perspective of mechanical energy density: Fractal aggregates above the nanometer scale? JF - Physical Review E N2 - The dynamic shear modulus of magnetoactive elastomers containing 70 and 80 mass % of carbonyl iron microparticles is measured as a function of strain amplitude via dynamic torsion oscillations in various magnetic fields. The results are presented in terms of the mechanical energy density and considered in the framework of the conventional Kraus model. The form exponent of the Kraus model is further related to a physical model of Huber et al. [Huber et al., J. Phys.: Condens. Matter 8, 409 (1996)] that uses a realistic representation for the cluster network possessing fractal structure. Two mechanical loading regimes are identified. At small strain amplitudes the exponent beta of the Kraus model changes in an externally applied magnetic field due to rearrangement of ferromagnetic-filler particles, while at large strain amplitudes, the exponent beta seems to be independent of the magnetic field. The critical mechanical energy characterizing the transition between these two regimes grows with the increasing magnetic field. Similarities between agglomeration and deagglomeration of magnetic filler under simultaneously applied magnetic field and mechanical shear and the concept of jamming transition are discussed. It is proposed that the magnetic field should be considered as an additional parameter to the jamming phase diagram of rubbers filled with magnetic particles. KW - BEHAVIOR KW - composites KW - hysteresis KW - MAGNETIC-FIELD KW - MODEL KW - RHEOLOGY KW - RUBBER KW - SENSITIVE ELASTOMERS KW - VISCOELASTIC PROPERTIES Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevE.95.062501 VL - 95 IS - 6 PB - Amer Physical Soc ER - TY - JOUR A1 - Belyaeva, Inna A. A1 - Klepp, Jürgen A1 - Lemmel, Hartmut A1 - Shamonin (Chamonine), Mikhail T1 - Feasibility of Probing the Filler Restructuring in Magnetoactive Elastomers by Ultra-Small-Angle Neutron Scattering JF - Applied Sciences N2 - Ultra-small-angle neutron scattering (USANS) experiments are reported on isotropic magnetoactive elastomer (MAE) samples with different concentrations of micrometer-sized iron particles in the presence of an in-plane magnetic field up to 350 mT. The effect of the magnetic field on the scattering curves is observed in the scattering vector range between 2.5 x 10(-5) and 1.85 x 10(-4) angstrom(-1). It is found that the neutron scattering depends on the magnetization history (hysteresis). The relation of the observed changes to the magnetic-field-induced restructuring of the filler particles is discussed. The perspectives of employing USANS for investigations of the internal microstructure and its changes in magnetic field are considered. KW - Anisotropy KW - Ferrofluids KW - hysteresis KW - magnetoactive elastomer KW - magnetorheological elastomer KW - Matrix KW - MIicrostructure KW - restructuring of the filler KW - ultra-small-angle neutron scattering Y1 - 2021 U6 - https://doi.org/10.3390/app11104470 VL - 11 IS - 10 SP - 1 EP - 9 PB - MDPI CY - Basel ER - TY - JOUR A1 - Glavan, Gašper A1 - Belyaeva, Inna A. A1 - Shamonin (Chamonine), Mikhail T1 - On the Piezomagnetism of Magnetoactive Elastomeric Cylinders in Uniform Magnetic Fields: Height Modulation in the Vicinity of an Operating Point by Time-Harmonic Fields JF - Polymers N2 - Soft magnetoactive elastomers (MAEs) are currently considered to be promising materials for actuators in soft robotics. Magnetically controlled actuators often operate in the vicinity of a bias point. Their dynamic properties can be characterized by the piezomagnetic strain coefficient, which is a ratio of the time-harmonic strain amplitude to the corresponding magnetic field strength. Herein, the dynamic strain response of a family of MAE cylinders to the time-harmonic (frequency of 0.1-2.5 Hz) magnetic fields of varying amplitude (12.5 kA/m-62.5 kA/m), superimposed on different bias magnetic fields (25-127 kA/m), is systematically investigated for the first time. Strain measurements are based on optical imaging with sub-pixel resolution. It is found that the dynamic strain response of MAEs is considerably different from that in conventional magnetostrictive polymer composites (MPCs), and it cannot be described by the effective piezomagnetic constant from the quasi-static measurements. The obtained maximum values of the piezomagnetic strain coefficient (∼102 nm/A) are one to two orders of magnitude higher than in conventional MPCs, but there is a significant phase lag (35-60°) in the magnetostrictive response with respect to an alternating magnetic field. The experimental dependencies of the characteristics of the alternating strain on the amplitude of the alternating field, bias field, oscillation frequency, and aspect ratio of cylinders are given for several representative examples. It is hypothesized that the main cause of observed peculiarities is the non-linear viscoelasticity of these composite materials. Y1 - 2024 U6 - https://doi.org/10.3390/polym16192706 N1 - Corresponding author der OTH Regensburg: Gašper Glavan VL - 16 IS - 19 ER - TY - JOUR A1 - Jezeršek, Matija A1 - Kriegl, Raphael A1 - Kravanja, Gaia A1 - Hribar, Luka A1 - Drevenšek‐Olenik, Irena A1 - Unold, Heiko A1 - Shamonin (Chamonine), Mikhail T1 - Control of Droplet Impact through Magnetic Actuation of Surface Microstructures JF - Advanced Materials Interfaces N2 - An effective method for on-demand control over the impact dynamics of droplets on a magnetoresponsive surface is reported. The surface is comprised of micrometer-sized lamellas from a magnetoactive elastomer on a copper substrate. The surface itself is fabricated using laser micromachining. The orientation of the lamellae is switched from edge-on (orthogonal to the surface) to face-on (parallel to the surface) by changing the direction of a moderate (<250 mT) magnetic field. This simple actuation technique can significantly change the critical velocities of droplet rebound, deposition, and splashing. Rebound and deposition regimes can be switched up to Weber number We < 13 ± 3, while deposition and splashing can be switched in the range of 32 < We < 52. Because a permanent magnet is used, no permanent power supply is required for maintaining the particular regime of droplet impact. The presented technology is highly flexible and enables selective fabrication and actuation of microstructures on complex devices. It has great potential for applications in soft robotics, microfluidics, and advanced thermal management. Y1 - 2023 U6 - https://doi.org/10.1002/admi.202202471 VL - 10 IS - 11 PB - Wiley ER - TY - JOUR A1 - Glavan, Gašper A1 - Kettl, Wolfgang A1 - Brunhuber, Alexander A1 - Shamonin (Chamonine), Mikhail A1 - Drevenšek‐Olenik, Irena T1 - Effect of Material Composition on Tunable Surface Roughness of Magnetoactive Elastomers JF - Polymers N2 - We investigated magnetic-field-induced modifications of the surface roughness of magnetoactive elastomers (MAEs) with four material compositions incorporating two concentrations of ferromagnetic microparticles (70 wt% and 80 wt%) and exhibiting two shear storage moduli of the resulting composite material (about 10 kPa and 30 kPa). The analysis was primarily based on spread optical reflection measurements. The surfaces of all four materials were found to be very smooth in the absence of magnetic field (RMS roughness below 50 nm). A maximal field-induced roughness modification (approximately 1 m/T) was observed for the softer material with the lower filler concentration, and a minimal modification (less than 50 nm/T) was observed for the harder material with the higher filler concentration. All four materials showed a significant decrease in the total optical reflectivity with an increasing magnetic field as well. This effect is attributed to the existence of a distinct surface layer that is depleted of microparticles in the absence of a magnetic field but becomes filled with particles in the presence of the field. We analyzed the temporal response of the reflective properties to the switching on and off of the magnetic field and found switching-on response times of around 0.1 s and switching-off response times in the range of 0.3-0.6 s. These observations provide new insight into the magnetic-field-induced surface restructuring of MAEs and may be useful for the development of magnetically reconfigurable elastomeric optical surfaces. KW - magnetically tunable surface reflectivity KW - magnetically tunable surface roughness KW - magnetorheological elastomer KW - magnetorheological polymers KW - surface properties Y1 - 2019 U6 - https://doi.org/10.3390/polym11040594 N1 - Corresponding author: Gašper Glavan VL - 11 IS - 4 SP - 1 EP - 13 PB - MDPI CY - Basel ER - TY - JOUR A1 - Glavan, Gašper A1 - Salamon, Peter A1 - Belyaeva, Inna A. A1 - Shamonin (Chamonine), Mikhail A1 - Drevenšek‐Olenik, Irena T1 - Tunable surface roughness and wettability of a soft magnetoactive elastomer JF - Journal of applied polymer science N2 - Surface topographical modifications of a soft magnetoactive elastomer (MAE) in response to variable applied magnetic field are investigated. The analysis is performed in situ and is based on optical microscopy, spread optical reflection and optical profilometry measurements. Optical profilometry analysis shows that the responsivity of magnetic field-induced surface roughness with respect to external magnetic field is in the range of 1 mu m/T. A significant hysteresis of surface modifications takes place for increasing and decreasing fields. Investigations of shape of sessile water droplets deposited on the MAE surface reveal that field-induced topographical modifications affect the contact angle of water at the surface. This effect is reversible and the responsivity to magnetic field is in the range of 20 degrees/T. Despite the increased surface roughness, the apparent contact angle decreases with increasing field, which is attributed to the field-induced protrusion of hydrophilic microparticles from the surface layer. KW - CONTACT KW - EVAPORATION KW - FORCE KW - hydrophobic polymers KW - MAGNETIC-MATERIALS KW - magnetism and magnetic properties KW - optical properties KW - STIMULI-RESPONSIVE SURFACES KW - stimuli-sensitive polymers KW - structure-property relationships Y1 - 2018 U6 - https://doi.org/10.1002/app.46221 VL - 135 IS - 18 PB - Wiley ER - TY - JOUR A1 - Kravanja, Gaia A1 - Kriegl, Raphael A1 - Hribar, Luka A1 - Glavan, Gašper A1 - Drevenšek‐Olenik, Irena A1 - Shamonin (Chamonine), Mikhail A1 - Jezeršek, Matija T1 - Magnetically Actuated Surface Microstructures for Efficient Transport and Tunable Separation of Droplets and Solids JF - Advanced Engineering Materials N2 - Efficient transportation of droplets (∽10 ¹ ̶̶̶̶ 10 ² µl) and small solid objects (∽10 ¹ ̶ 10 ² mm ³ ) have important applications in many fields, such as microfluidics, lab‐on‐a‐chip devices, drug delivery, etc. A novel multifunctional surface consisting of a periodic array of micro‐lamellae from a soft magnetoactive elastomer (MAE) on a plastic substrate is reported for these purposes. The physical origin of the propulsion is the bending of soft magnetic lamellae in non‐uniform magnetic fields, which is also observed in uniform magnetic fields. The magnetoactive surface is fabricated using a facile and rapid method of laser ablation. The propulsion of items is realized using a four‐pole rotating magnet. This results in a cyclic lamellar fringe motion over the micro‐structured surface and brings an advantage of easy reciprocation of transport by rotation reversal. Two modes of object transportation are identified: “pushing” mode for precise control of droplet and solid positioning and “bouncing” mode for heavier solid objects transportation. A water droplet of 5 μl or a glass sphere with a 2.1 mm diameter can be moved at a maximum speed of 60 mm s ⁻¹ . The multifunctionality of the proposed mechatronic platform is demonstrated on the examples of selective solid‐liquid separation and droplet merging. KW - Keywordslaser micromachinings KW - magnetoactive elastomers KW - magnetoresponsivesurfaces KW - object separations KW - object transportations Y1 - 2023 U6 - https://doi.org/10.1002/adem.202301000 SN - 1527-2648 VL - 25 IS - 22 SP - 1 EP - 11 PB - Wiley-VCH ER - TY - JOUR A1 - Kravanja, Gaia A1 - Belyaeva, Inna A. A1 - Hribar, Luka A1 - Drevenšek‐Olenik, Irena A1 - Shamonin (Chamonine), Mikhail A1 - Jezeršek, Matija T1 - Laser Micromachining of Magnetoactive Elastomers as Enabling Technology for Magnetoresponsive Surfaces JF - Advanced Materials Technologies N2 - A simple method for structuring of the surface of a magnetoactive elastomer (MAE) on the tens of micrometers scale, which capabilities extend beyond conventional mold-based polymer casting, is reported. The method relies on the ablation of the material by absorption of nanosecond infrared pulses from a commercial laser. It is shown that it is possible to fabricate parallel lamellar structures with a high aspect ratio (up to 6:1) as well as structures with complex scanning trajectories. The method is fast (fabrication time for the 7 × 7 mm2 is about 60 s), and the results are highly reproducible. To illustrate the capabilities of the fabrication method, both orthogonal to the MAE surface and tilted lamellar structures are fabricated. These magnetosensitive lamellae can be easily bent by ±45° using an external magnetic field of about 230 mT. It is demonstrated that this bending allows one to control the sliding angle of water droplets in a great range between a sticky (>90°) and a sliding state (<20°). Perspectives on employing this fabrication technology for magnetosensitive smart surfaces in microfluidic devices and soft robotics are discussed. Y1 - 2021 U6 - https://doi.org/10.1002/admt.202101045 VL - 7 IS - 5 SP - 1 EP - 8 PB - Wiley ER - TY - JOUR A1 - Kravanja, Gaia A1 - Belyaeva, Inna A. A1 - Hribar, Luka A1 - Drevenšek‐Olenik, Irena A1 - Jezeršek, Matija A1 - Shamonin (Chamonine), Mikhail T1 - Tunable Drop Splashing on Magnetoactive Elastomers JF - Advanced Materials Interfaces N2 - The significant effect of an external dc magnetic field on the splashing behavior of ethanol drops impacting on the unstructured (flat) surface of soft magnetoactive elastomers (MAEs) is reported. The Weber number corresponding to the transition between the deposition and the splashing regime is reduced by ≈20% in a moderate magnetic field of ≈300 mT. Alongside this effect, a two-fold increase of the initial deceleration of the ejection sheet is observed for the softest sample. The main underlying mechanism for the observed phenomena is believed to be the magnetic-field-induced stiffening of the MAEs. Further possible mechanisms are magnetically induced changes in the surface roughness and magnetic-field-induced plasticity (magnetic shape memory effect). The potential application areas are magnetically regulable wetting and magneto-responsive surfaces for controlling the drop splashing. Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-24504 N1 - Corresponding author: Mikhail Shamonin VL - 8 IS - 11 SP - 1 EP - 7 PB - Wiley ER - TY - CHAP A1 - Kravanja, Gaia A1 - Belyaeva, Inna A. A1 - Hribar, Luka A1 - Drevenšek‐Olenik, Irena A1 - Shamonin (Chamonine), Mikhail A1 - Jezeršek, Matija T1 - Adaptive Magneto-Responsive Surfaces Fabricated by Laser-Based Microstructuring T2 - Proceedings of the ASME 2022 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 2022): September 12-14, 2022, Dearborn, Michigan N2 - Adaptive surface microstructures are used extensively in nature to control various surface properties such as wettability, adhesion, self-cleaning, drag reduction, etc. Regulation of these properties can be achieved with the appropriate employment of a multitude of smart materials, whose characteristics/response can be controlled by noncontact stimuli, e.g., light, heat, or magnetic field. One of the very promising magneto-regulable smart materials are magnetoactive elastomers (MAEs). They are comprised of a compliant polymer matrix with embedded micrometer-sized ferromagnetic particles. The particles interact with each other and a magnetic field. This results in remarkable tunability of the physical properties of MAEs. This paper reports a fast, resilient, and tailored method for direct surface micromachining of MAEs that enables micro-structuring without mechanical contact between the tool and the material, bypassing the usual constraints of conventional fabrication methods. It is shown that it is possible to fabricate a large variety of different microstructure geometries whose precision is limited predominantly by the size of magnetic particles. Lamellar structures with a high aspect ratio (up to 6:1) oriented either perpendicularly to the surface, can be strongly bent by applying magnetic fields in the range of 0–250 mT. KW - adaptive surfaces KW - magnetoactive elastomers KW - magneto-responsive microstructures KW - laser microstructuring Y1 - 2022 SN - 978-0-7918-8627-4 U6 - https://doi.org/10.1115/SMASIS2022-90742 PB - ASME ER - TY - GEN A1 - Kriegl, Raphael A1 - Kravanja, Gaia A1 - Hribar, Luka A1 - Jezeršek, Matija A1 - Drevenšek‐Olenik, Irena A1 - Shamonin (Chamonine), Mikhail T1 - Characterization of Wetting Properties of Magnetoactive Elastomer Surfaces T2 - Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS) - 2023, September 11–13, 2023 Austin, Texas, USA N2 - Commercially available contact angle (CA) measuring devices usually do not allow for the application of magnetic fields to the sample under test. A setup for measuring the CA of liquids on magnetosensitive surfaces has been developed specifically for investigating the surfaces of magnetoactive elastomers (MAEs). The addition of a programmable linear stage, which moves a permanent magnet, allows for fine control of the magnetic field applied to the MAE without the need for large and power-consuming electromagnets. Paired with a custom control and evaluation software, this measurement setup operates semiautomatically, limiting operator error and increasing precision, speed, as well as repeatability of static and dynamic CA measurements for different magnetoactive materials. The software is equipped with robust droplet fitting algorithms to avoid experimental challenges arising with soft magnetoactive materials, such as the curling of sample edges or diffuse non-reflective surfaces. Several application examples on MAE surfaces, both processed and unprocessed, are presented. KW - magnetoactive elastomers KW - image processing KW - droplet contour fitting KW - contact angle Y1 - 2023 SN - 978-0-7918-8752-3 U6 - https://doi.org/10.1115/SMASIS2023-110998 N1 - Corresponding author: Raphael Kriegl PB - The American Society of Mechanical Engineers CY - New York, USA ER - TY - JOUR A1 - Glavan, Gašper A1 - Belyaeva, Inna A. A1 - Drevenšek‐Olenik, Irena A1 - Shamonin (Chamonine), Mikhail T1 - Experimental study of longitudinal, transverse and volume strains of magnetoactive elastomeric cylinders in uniform magnetic fields JF - Journal of Magnetism and Magnetic Materials N2 - Magnetoactive elastomers (MAEs) are promising materials for realization of magnetic field-controlled soft actuators. Herein, a systematic investigation of magnetic field-induced macroscopic deformations of soft MAE cylinders with a diameter of 15 mm in uniform quasi-static magnetic fields directed parallel to the cylinder’s axis is reported. The measurements were based on image processing. Thirty-six MAE samples differing in the weight fraction of the iron filler (70 wt%, 75 wt% and 80 wt%), alignment of filling particles, and the aspect ratio (0.2, 0.4, 0.6, 0.8, 1.0 and 1.2) were fabricated. MAE cylinders exhibited high relative change in height (up to 35% in the field of 485 kA/m) and lateral contraction. The dependence of the maximum extensional strain on the aspect ratio was obtained and compared with theoretical considerations. A concave dent was formed on the free circular base in magnetic fields. This concavity was characterized experimentally. A significant volumetric strain of the order of magnitude of 10% was calculated in MAEs for the first time. In consequently repeated magnetization cycles, the remanent extensional strain significantly increased after each cycle. The results are qualitatively discussed in the framework of the modern views on the magnetically induced macroscopic deformations of MAEs. The directions of further research are outlined. Y1 - 2023 U6 - https://doi.org/10.1016/j.jmmm.2023.170826 SN - 0304-8853 VL - 579 PB - Elsevier ER - TY - JOUR A1 - Hörner, Eduard A1 - Krykanov, Ivan M. A1 - Chashin, Dmitri V. A1 - Fetisov, Yuri K. A1 - Fetisov, Leonid Y. A1 - Shamonin (Chamonine), Mikhail T1 - Magnetoelectric characteristics of cobalt-iron alloy–lead zirconate titanate bilayer planar structures JF - International Journal of Materials Research N2 - The characteristics of both direct and converse magnetoelectric (ME) interactions in bilayer composite structures comprising layers of a commercially available magnetostrictive permendur CoFe alloy and different piezoelectric PZT ceramics are investigated in detail by the method of harmonic field modulation. It is shown that, given the optimum DC magnetic bias field, a high piezomagnetic coefficient in the alloy leads to increased efficiency of ME interactions. The resonant behavior of frequency dependencies of the magnetoelectric voltage is explained by excitation of bending and planar mechanical oscillations in the structures. The results are of interest for developing highly sensitive AC magnetic field sensors and magnetoelectric transducers for energy harvesting from mechanical vibrations. KW - Composite materials KW - Magnetostriction KW - Piezoelectricity KW - Magnetically ordered materials KW - Magnetoelectric effect Y1 - 2012 U6 - https://doi.org/10.3139/146.110776 VL - 103 IS - 11 PB - De Gruyter ER - TY - JOUR A1 - Straus, Izidor A1 - Kokot, Gašper A1 - Kravanja, Gaia A1 - Hribar, Luka A1 - Kriegl, Raphael A1 - Shamonin (Chamonine), Mikhail A1 - Jezeršek, Matija A1 - Drevenšek‐Olenik, Irena T1 - Dynamically tunable lamellar surface structures from magnetoactive elastomers driven by a uniform magnetic field JF - Soft Matter N2 - Stimuli responsive materials are key ingredients for any application that requires dynamically tunable or on-demand responses. In this work we report experimental and theoretical investigation of magnetic-field driven modifications of soft-magnetic elastomers whose surface was processed by laser ablation into lamellar microstructures that can be manipulated by a uniform magnetic field. We present a minimal hybrid model that elucidates the associated deflection process of the lamellae and explains the lamellar structure frustration in terms of dipolar magnetic forces arising from the neighbouring lamellae. We experimentally determine the magnitude of the deflection as a function of magnetic flux density and explore the dynamic response of lamellae to fast changes in a magnetic field. A relationship between the deflection of lamellae and modifications of the optical reflectance of the lamellar structures is resolved. KW - Intelligente Materialien Y1 - 2023 U6 - https://doi.org/10.1039/D3SM00012E VL - Vol. 19 SP - 3357 EP - 3365 PB - Royal Society of Chemistry ER - TY - JOUR A1 - Straus, Izidor A1 - Kravanja, Gaia A1 - Hribar, Luka A1 - Kriegl, Raphael A1 - Jezeršek, Matija A1 - Shamonin (Chamonine), Mikhail A1 - Drevenšek‐Olenik, Irena A1 - Kokot, Gašper T1 - Surface Modification of Magnetoactive Elastomers by Laser Micromachining JF - Materials N2 - It has been recently demonstrated that laser micromachining of magnetoactive elastomers is a very convenient method for fabricating dynamic surface microstructures with magnetically tunable properties, such as wettability and surface reflectivity. In this study, we investigate the impact of the micromachining process on the fabricated material’s structural properties and its chemical composition. By employing scanning electron microscopy, we investigate changes in size distribution and spatial arrangement of carbonyl iron microparticles dispersed in the polydimethylsiloxane (PDMS) matrix as a function of laser irradiation. Based on the images obtained by a low vacuum secondary electron detector, we analyze modifications of the surface topography. The results show that most profound modifications occur during the low-exposure (8 J/cm^2) treatment of the surface with the laser beam. Our findings provide important insights for developing theoretical models of functional properties of laser-sculptured microstructures from magnetoactive elastomers. KW - magnetoactive elastomer KW - MAE KW - laser micromachining KW - particle distributions KW - SEM Y1 - 2024 U6 - https://doi.org/10.3390/ma17071550 N1 - This research was funded by the Slovenian Research Agency (ARRS): research programs P1-0192, P2-0392, and research project J1-3006. The work of R.K. and M.S. in Regensburg was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project number 437391117. VL - 2024 IS - 17 / 7 PB - MDPI AG CY - Basel, Switzerland ER - TY - CHAP A1 - Kriegl, Raphael A1 - Jezeršek, Matija A1 - Kravanja, Gaia A1 - Hribar, Luka A1 - Kokot, Gašper A1 - Drevenšek‐Olenik, Irena A1 - Shamonin (Chamonine), Mikhail T1 - Characterization of Tunable Rebound Properties of Microstructured Magnetoactive Elastomers T2 - ASME 2024 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS), September 9–11, 2024, Atlanta, Georgia, USA N2 - We present a novel method to control the rebounding behavior of small mm-sized solid balls by employing magnetoactive elastomers (MAEs) with microstructured surfaces. An MAE is a composite material consisting of μm-sized ferromagnetic particles dispersed in a soft elastomer (e.g., polydimethylsiloxane) matrix. In the act of rebounding, the ball hits an MAE surface and bounces back. The MAE samples contained 75 wt.% of iron. This composite material is known to respond to an applied magnetic field with increased stiffness (due to the magnetorheological effect) and plasticity. To adjust the rebound properties, the top layer of the MAE material was additionally modified by micromachining lamellar structures with different dimensions on the 100 μm scale via laser ablation. Due to the resulting high aspect ratio, these surface structures were sensitive to the magnetic field direction. The lamellas could stand up straight or lay down flat. The rebound behavior was evaluated by using a custom build apparatus that facilitates dropping of the balls in a precise and repeatable manner. A ball was dropped from different heights. The ball trajectory was captured with a high-speed camera to investigate the rebound properties. The recorded video was processed using a custom software written in Python. The experimental procedure and data processing algorithms are presented in detail. The results for the samples with different geometrical dimensions are provided as examples. It is made evident that the magnetic field influences the rebound properties of small non-magnetic balls impinging microstructured MAE surfaces. The change in surface topography is an effective way to control the ball rebound. The fabrication flexibility in geometrical dimensions of surface microstructures opens a convenient way to tune the desired response to magnetic fields. The presented idea may find applications in impact mitigation or small-scale sorting machinery, e.g. for recycling. Y1 - 2024 SN - 978-0-7918-8832-2 U6 - https://doi.org/10.1115/SMASIS2024-139154 PB - American Society of Mechanical Engineers CY - New York, USA ER - TY - JOUR A1 - Lovšin, Matija A1 - Brandl, Dominik A1 - Glavan, Gašper A1 - Belyaeva, Inna A. A1 - Cmok, Luka A1 - Coga, Lucija A1 - Kalin, Mitjan A1 - Shamonin (Chamonine), Mikhail A1 - Drevenšek‐Olenik, Irena T1 - Reconfigurable Surface Micropatterns Based on the Magnetic Field-Induced Shape Memory Effect in Magnetoactive Elastomers JF - Polymers N2 - A surface relief grating with a period of 30 mu m is embossed onto the surface of magnetoactive elastomer (MAE) samples in the presence of a moderate magnetic field of about 180 mT. The grating, which is represented as a set of parallel stripes with two different amplitude reflectivity coefficients, is detected via diffraction of a laser beam in the reflection configuration. Due to the magnetic-field-induced plasticity effect, the grating persists on the MAE surface for at least 90 h if the magnetic field remains present. When the magnetic field is removed, the diffraction efficiency vanishes in a few minutes. The described effect is much more pronounced in MAE samples with larger content of iron filler (80 wt%) than in the samples with lower content of iron filler (70 wt%). A simple theoretical model is proposed to describe the observed dependence of the diffraction efficiency on the applied magnetic field. Possible applications of MAEs as magnetically reconfigurable diffractive optical elements are discussed. It is proposed that the described experimental method can be used as a convenient tool for investigations of the dynamics of magnetically induced plasticity of MAEs on the micrometer scale. KW - ADHESION KW - friction KW - magnetoactive elastomers KW - magnetorheological elastomer KW - optical diffraction KW - shape memory effect KW - surface microstructuring KW - TEMPERATURE Y1 - 2021 U6 - https://doi.org/10.3390/polym13244422 VL - 13 IS - 24 PB - MDPI ER - TY - CHAP A1 - Holthaus, Carsten A1 - Hagedorn, Oliver A1 - Klank, Michael A1 - Shamonin (Chamonine), Mikhail A1 - Trifonov, A. A1 - Dötsch, Horst T1 - Preparation and Characterization of Sensitive Magnetic Garnet Films for MOI Applications T2 - Magneto-Optical Imaging. Proceedings of the NATO Advanced Research Workshop on Magneto-Optical Imaging, Øystese, Norway, 28 - 30 August 2003 N2 - Magnetic garnet films prepared by liquid phase epitaxy on paramagnetic substrates of gadolinium gallium garnet are currently used for the imaging of magnetic field distributions. This application is based on the Faraday rotation which can be strongly enhanced by bismuth incorporation. For gray scale imaging the plane of the sensor film should be an easy plane of magnetization so that no domains nucleate. However, incorporation of bismuth induces a strong positive uniaxial anisotropy perpendicular to the film plane, especially if films of [111] orientation are used. To counteract this unwanted behavior neodymium and/or praseodymium are substituted in addition to bismuth. These two elements cause a very strong negative anisotropy. This is tested experimentally by growing series of garnet films with gradually changing composition and growth parameters. KW - Magneto-optics KW - Imaging KW - Garnet films Y1 - 2004 U6 - https://doi.org/10.1007/978-94-007-1007-8_42 SP - 329 EP - 336 PB - Kluwer CY - Dodrecht ER - TY - JOUR A1 - Bodnaruk, Andrii V. A1 - Brunhuber, Alexander A1 - Kalita, Viktor M. A1 - Kulyk, Mykola M. A1 - Snarskii, Andrei A. A1 - Lozenko, Albert F. A1 - Ryabchenko, Sergey M. A1 - Shamonin (Chamonine), Mikhail T1 - Temperature-dependent magnetic properties of a magnetoactive elastomer: Immobilization of the soft-magnetic filler JF - Journal of Applied Physics N2 - The magnetic properties of a magnetoactive elastomer (MAE) filled with mu m-sized soft-magnetic iron particles have been experimentally studied in the temperature range between 150 K and 310 K. By changing the temperature, the elastic modulus of the elastomer matrix was modified, and it was possible to obtain magnetization curves for an invariable arrangement of particles in the sample and in the case when the particles were able to change their position within the MAE under the influence of magnetic forces. At low (less than 220 K) temperatures, when the matrix becomes rigid, the magnetization of the MAE does not show a hysteresis behavior, and it is characterized by a negative value of the Rayleigh constant. At room temperature, when the polymer matrix is compliant, a magnetic hysteresis exists where the dependence of the differential magnetic susceptibility on the magnetic field exhibits local maxima. The appearance of these maxima is explained by the elastic resistance of the matrix to the displacement of particles under the action of magnetic forces. KW - BEHAVIOR KW - composites KW - FIELD KW - GELS KW - hysteresis KW - Magnetorheological elastomers KW - MICROSTRUCTURE KW - PERMEABILITY KW - RAYLEIGH LAW KW - STRAIN Y1 - 2018 U6 - https://doi.org/10.1063/1.5023891 VL - 123 IS - 11 PB - AIP Publishing ER - TY - JOUR A1 - Scharfenberg, Georg A1 - Mottok, Jürgen A1 - Artmann, Christina A1 - Hobelsberger, Martin A1 - Paric, Ivan A1 - Großmann, Benjamin A1 - Pohlt, Clemens A1 - Wackerbarth, Alena A1 - Pausch, Uli A1 - Heidrich, Christiane A1 - Fadanelli, Martin A1 - Elsner, Michael A1 - Pöcher, Daniel A1 - Pittroff, Lenz A1 - Beer, Stefan A1 - Brückl, Oliver A1 - Haslbeck, Matthias A1 - Sterner, Michael A1 - Thema, Martin A1 - Muggenthaler, Nicole A1 - Lenck, Thorsten A1 - Götz, Philipp A1 - Eckert, Fabian A1 - Deubzer, Michael A1 - Stingl, Armin A1 - Simsek, Erol A1 - Krämer, Stefan A1 - Großmann, Benjamin A1 - Schlegl, Thomas A1 - Niedersteiner, Sascha A1 - Berlehner, Thomas A1 - Joblin, Mitchell A1 - Mauerer, Wolfgang A1 - Apel, Sven A1 - Siegmund, Janet A1 - Riehle, Dirk A1 - Weber, Joachim A1 - Palm, Christoph A1 - Zobel, Martin A1 - Al-Falouji, Ghassan A1 - Prestel, Dietmar A1 - Scharfenberg, Georg A1 - Mandl, Roland A1 - Deinzer, Arnulf A1 - Halang, W. A1 - Margraf-Stiksrud, Jutta A1 - Sick, Bernhard A1 - Deinzer, Renate A1 - Scherzinger, Stefanie A1 - Klettke, Meike A1 - Störl, Uta A1 - Wiech, Katharina A1 - Kubata, Christoph A1 - Sindersberger, Dirk A1 - Monkman, Gareth J. A1 - Dollinger, Markus A1 - Dembianny, Sven A1 - Kölbl, Andreas A1 - Welker, Franz A1 - Meier, Matthias A1 - Thumann, Philipp A1 - Swidergal, Krzysztof A1 - Wagner, Marcus A1 - Haug, Sonja A1 - Vernim, Matthias A1 - Seidenstücker, Barbara A1 - Weber, Karsten A1 - Arsan, Christian A1 - Schone, Reinhold A1 - Münder, Johannes A1 - Schroll-Decker, Irmgard A1 - Dillinger, Andrea Elisabeth A1 - Fuchshofer, Rudolf A1 - Monkman, Gareth J. A1 - Shamonin (Chamonine), Mikhail A1 - Geith, Markus A. A1 - Koch, Fabian A1 - Ühlin, Christian A1 - Schratzenstaller, Thomas A1 - Saßmannshausen, Sean Patrick A1 - Auchter, Eberhard A1 - Kriz, Willy A1 - Springer, Othmar A1 - Thumann, Maria A1 - Kusterle, Wolfgang A1 - Obermeier, Andreas A1 - Udalzow, Anton A1 - Schmailzl, Anton A1 - Hierl, Stefan A1 - Langer, Christoph A1 - Schreiner, Rupert ED - Baier, Wolfgang T1 - Forschungsbericht 2015 T3 - Forschungsberichte der OTH Regensburg - 2015 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-13867 SN - 978-3-00-048589-3 CY - Regensburg ER - TY - JOUR A1 - Shamonin (Chamonine), Mikhail A1 - Klank, Michael A1 - Hagedorn, Oliver A1 - Dötsch, Horst T1 - Magneto-optical visualization of metal-loss defects in a ferromagnetic plate: experimental verification of theoretical modeling JF - Applied optics N2 - Rare-earth iron garnet films with in-plane magnetic anisotropy grown on [111]-oriented substrates are promising for the visualization of magnetic leakage fields in nondestructive evaluation. Such magneto-optical films have to be specifically engineered, and we give an example of this technology. To assess the validity and accuracy of finite-element calculations of a magnetization assembly combined with the physical modeling of the image formation, comparisons between calculated and experimentally obtained magneto-optical images of metal-loss defects have been made. A convincing quantitative agreement is demonstrated. It is shown that both physical and computer modeling techniques allow for a predictive engineering design of the prospective applications and provide greater insight into the method. Y1 - 2001 U6 - https://doi.org/10.1364/ao.40.003182 VL - 40 IS - 19 SP - 3182 EP - 3189 PB - Optica Publishing Group ER - TY - JOUR A1 - Bodnaruk, A1 - Andrii V., A1 - Brunhuber, Alexander A1 - Kalita, Viktor M. A1 - Kulyk, Mykola M. A1 - Kurzweil, Peter A1 - Snarskii, Andrei A. A1 - Lozenko, Albert F. A1 - Ryabchenko, Sergey M. A1 - Shamonin (Chamonine), Mikhail T1 - Magnetic anisotropy in magnetoactive elastomers, enabled by matrix elasticity JF - Polymer N2 - Polydimethylsiloxane based magnetoactive elastomers demonstrate above the melting transition range (e.g. at room temperature) an induced uniaxial magnetic anisotropy, which grows with increasing magnetic field. By freezing a material down to 150 K, displaced iron microparticles are immobilized, so that the magnetic anisotropy can be measured. Magnetic anisotropy “constant” is a consequence of particle displacements and a characteristic of the energy of internal deformations in the polymer matrix. The maximum anisotropy constant of the filling is at least one order of magnitude larger than the shear modulus of the pure elastomer (matrix). In a magnetic field, the gain in the rigidity of the composite material is attributed to the magnetomechanical coupling, which is in turn a source of anisotropy. The concept of effective magnetic field felt by the magnetization allows one to explain the magnetization curve at room temperature from low-temperature measurements. The results can be useful for developing vibration absorbers and isolators. KW - Experimental methodology KW - Internal deformation KW - magnetic properties KW - magnetoactive elastomer KW - Magnetomechanical coupling KW - magnetorheological elastomer Y1 - 2019 U6 - https://doi.org/10.1016/j.polymer.2018.12.027 VL - 162 IS - January SP - 63 EP - 72 PB - Elsevier ER - TY - CHAP A1 - Dötsch, Horst A1 - Klank, Michael A1 - Hagedorn, Oliver A1 - Holthaus, Carsten A1 - Shamonin (Chamonine), Mikhail A1 - Trifonov, A. T1 - Optimization of Magnetic Garnet Films for Magneto-Optical Imaging of Magnetic Field Distributions T2 - Magneto-Optical Imaging. Proceedings of the NATO Advanced Research Workshop on Magneto-Optical Imaging, Øystese, Norway, 28 - 30 August 2003 N2 - Rare-earth iron garnet films are currently applied for magneto-optical imaging of magnetic field distributions. The physical properties of the films can be controlled by the chemical composition, the growth conditions and the crystallographic orientation. The sensor properties must be optimized according to the application desired. A new optimization method is introduced based on the swing of the photoresponse. An application example is presented. Furthermore, the sensitivity can be strongly enhanced using specific crystallographic orientations which induce an easy plane of magnetization being tilted with respect to the film plane. Experimental results of a [112] oriented garnet film are in good agreement with calculations. The influence of the cubic anisotropy on the sensor performance is discussed. Finally, it is shown that also domain films can be applied for magneto-optical imaging. KW - Magneto-optics KW - imaging KW - magnetic garnet films Y1 - 2004 U6 - https://doi.org/10.1007/978-94-007-1007-8_39 SP - 301 EP - 309 PB - KLuwer CY - Dodrecht ER - TY - JOUR A1 - Klank, Michael A1 - Hagedorn, Oliver A1 - Holthaus, Carsten A1 - Shamonin (Chamonine), Mikhail A1 - Dötsch, Horst T1 - Characterization and optimization of magnetic garnet films for magneto-optical visualization of magnetic field distributions JF - NDT & E International N2 - Rare-earth iron garnet films with in-plane anisotropy grown on (111)-oriented substrates can be used as magneto-optical indicator films for visualization of magnetic leakage fields in nondestructive evaluation. The influence of Faraday rotation, Faraday ellipticity, absorption and film thickness on the performance of a magneto-optical indicator film is investigated. A new optimization method is introduced and compared with the method of contrast optimization. The theory is experimentally verified and an application example is presented. KW - Magneto-optics KW - Imaging KW - Magnetic flux leakage KW - Garnet films Y1 - 2003 U6 - https://doi.org/10.1016/S0963-8695(03)00012-4 VL - 36 IS - 6 SP - 375 EP - 381 PB - Elsevier ER - TY - JOUR A1 - Kriegl, Raphael A1 - Kravanja, Gaia A1 - Hribar, Luka A1 - Čoga, Lucija A1 - Drevenšek‐Olenik, Irena A1 - Jezeršek, Matija A1 - Kalin, Mitjan A1 - Shamonin (Chamonine), Mikhail T1 - Microstructured Magnetoactive Elastomers for Switchable Wettability JF - Polymers N2 - We demonstrate the control of wettability of non-structured and microstructured magnetoactive elastomers (MAEs) by magnetic field. The synthesized composite materials have a concentration of carbonyl iron particles of 75 wt.% (≈27 vol.%) and three different stiffnesses of the elastomer matrix. A new method of fabrication of MAE coatings on plastic substrates is presented, which allows one to enhance the response of the apparent contact angle to the magnetic field by exposing the particle-enriched side of MAEs to water. A magnetic field is not applied during crosslinking. The highest variation of the contact angle from (113 ± 1)° in zero field up to (156 ± 2)° at about 400 mT is achieved in the MAE sample with the softest matrix. Several lamellar and pillared MAE structures are fabricated by laser micromachining. The lateral dimension of surface structures is about 50 µm and the depth varies between 3 µm and 60 µm. A systematic investigation of the effects of parameters of laser processing (laser power and the number of passages of the laser beam) on the wetting behavior of these structures in the absence and presence of a magnetic field is performed. In particular, strong anisotropy of the wetting behavior of lamellar structures is observed. The results are qualitatively discussed in the framework of the Wenzel and Cassie-Baxter models. Finally, directions of further research on magnetically controlled wettability of microstructured MAE surfaces are outlined. The obtained results may be useful for the development of magnetically controlled smart surfaces for droplet-based microfluidics. Y1 - 2022 U6 - https://doi.org/10.3390/polym14183883 N1 - Corresponding authors: Raphael Kriegl und Mikhail Shamonin VL - 14 IS - 18 SP - 1 EP - 21 PB - MDPI ER - TY - JOUR A1 - Shamonin (Chamonine), Mikhail A1 - Beuker, T. A1 - Rosen, P. A1 - Klank, Michael A1 - Hagedorn, Oliver A1 - Dötsch, Horst T1 - Feasibility of magneto-optic flaw visualization using thin garnet films JF - NDT & E International N2 - We investigate the feasibility of using rare-earth iron garnet films grown on (111)-oriented substrates as magneto-optic indicator films for the visualization of magnetic leakage fields in non-destructive evaluation. In most cases the leakage field of the defect has a strong component in the film plane. The influence of this in-plane dc magnetic field on the image formation is investigated. It is shown that the presence of a strong in-plane magnetic field allows one to extend the dynamic range of the out-of-plane field imposed by the uniaxial anisotropy field HA. On the other hand, an in-plane field reduces the sensitivity. The guidelines for selecting parameters of magneto-optic indicator films are given. KW - Garnet films KW - Magneto-optics KW - Imaging KW - Flaw visualization KW - Magnetic flux leakage Y1 - 2000 U6 - https://doi.org/10.1016/s0963-8695(00)00028-1 VL - 33 IS - 8 SP - 547 EP - 553 PB - Elsevier ER - TY - JOUR A1 - Klank, Michael A1 - Hagedorn, Oliver A1 - Shamonin (Chamonine), Mikhail A1 - Rosen, H. A1 - Dötsch, Horst T1 - Sensitive magneto-optical sensors for visualization of magnetic fields using garnet films of specific orientations JF - Journal of Applied Physics N2 - Garnet films of high Faraday rotation are applied as magneto-optical sensors to visualize the spatial distribution of magnetic fields. Using specific orientations, the induced anisotropy can generate an easy plane of magnetization which is inclined with respect to the film plane. If the magnetization lies in this plane a very high sensitivity can be achieved. The dependence of the geometrical orientation of the easy plane on the growth direction is calculated and the sensitivity and dynamic range are derived. Experimental results of a [112] oriented garnet film are in good agreement with calculations. Y1 - 2002 U6 - https://doi.org/10.1063/1.1516839 VL - 92 PB - AIP ER - TY - CHAP A1 - Dötsch, Horst A1 - Holthaus, Carsten A1 - Trifonov, A. A1 - Klank, Michael A1 - Hagedorn, Oliver A1 - Shamonin (Chamonine), Mikhail A1 - Schützmann, J. T1 - Application of Magnetic Garnet Films for Magnetooptical Imaging of Magnetic Field Distributions T2 - MRS Online Proceedings Library N2 - Rare-earth iron garnet films of high quality can be grown by liquid phase epitaxy on paramagnetic substrates of gadolinium galliumgarnet. Such films are currently used for imaging of the spatial distribution of magnetic fields. This application is based on the Faraday rotation which can strongly be enhanced by bismuth incorporation. The physical properties of the films can be controlled by the chemical composition, the growth conditions and the crystallographic orientation. The sensor properties like sensitivity, dynamic range, signal linearity and unambiguity must be optimized according to the application desired. These properties, however, are not independent of each other. In addition, they strongly depend on the optical wavelength. Thus, it is necessary to find compromises. The influence of Faraday rotation, Faraday ellipticity, optical absorption, magnetic anisotropies and film thickness on the performance of a magnetooptical indicator film is investigated. Based on the swing of the photoresponse, a new optimization process is introduced. The process is experimentally verified and application examples are demonstrated. Furthermore, two methods are presented to enhance the sensitivity of magnetooptical sensors. Using specific crystallographic orientations, an easy plane of magnetization can be induced which is inclined with respect to the film plane. If the magnetization lies in this plane a very high sensitivity is achieved. The dependence of the geometrical orientation of the easy plane on the growth direction is calculated and the sensitivity and dynamic range are derived. Experimental results of a [112] oriented garnet film are in good agreement with calculations. Garnet films which are magnetized along the film normal due to a strong induced uniaxial anisotropy support magnetic domains. If the collapse field perpendicular to the film plane is small, such films can be used as very sensitive indicator films. Such films are easier to prepare than sensitive in-plane films. However, the spatial resolution is limited by the size of the domains. This disadvantage can be avoided by applying a bias field in the film plane. Directly at the in-plane collapse field the sensor film is in-plane magnetized yielding high spatial resolution at still high sensitivity. The variation of magnetooptical images with in-plane induction is demonstrated. Experimental results are in agreement with calculations. Y1 - 2004 U6 - https://doi.org/10.1557/PROC-834-J6.1 SP - 18 EP - 29 PB - Springer ER - TY - JOUR A1 - Mauerer, Wolfgang A1 - Rexhepaj, Tanja A1 - Monkman, Gareth J. A1 - Sindersberger, Dirk A1 - Diermeier, Andreas A1 - Neidhart, Thomas A1 - Wolfrum, Dominik A1 - Sterner, Michael A1 - Heberl, Michael A1 - Nusko, Robert A1 - Maier, Georg A1 - Nagl, Klaus A1 - Reuter, Monika A1 - Hofrichter, Andreas A1 - Lex, Thomas A1 - Lesch, Florian A1 - Kieninger, Bärbel A1 - Szalo, Alexander Eduard A1 - Zehner, Alexander A1 - Palm, Christoph A1 - Joblin, Mitchell A1 - Apel, Sven A1 - Ramsauer, Ralf A1 - Lohmann, Daniel A1 - Westner, Markus A1 - Strasser, Artur A1 - Munndi, Maximilian A1 - Ebner, Lena A1 - Elsner, Michael A1 - Weiß, Nils A1 - Segerer, Matthias A1 - Hackenberg, Rudolf A1 - Steger, Sebastian A1 - Schmailzl, Anton A1 - Dostalek, Michael A1 - Armbruster, Dominik A1 - Koch, Fabian A1 - Hierl, Stefan A1 - Thumann, Philipp A1 - Swidergal, Krzysztof A1 - Wagner, Marcus A1 - Briem, Ulrich A1 - Diermeier, Andreas A1 - Spreitzer, Stefan A1 - Beiderbeck, Sabrina A1 - Hook, Christian A1 - Zobel, Martin A1 - Weber, Tim A1 - Groß, Simon A1 - Penzkofer, Rainer A1 - Dendorfer, Sebastian A1 - Schillitz, Ingo A1 - Bauer, Thomas A1 - Rudolph, Clarissa A1 - Schmidt, Katja A1 - Liebetruth, Thomas A1 - Hamer, Markus A1 - Haug, Sonja A1 - Vernim, Matthias A1 - Weber, Karsten A1 - Saßmannshausen, Sean Patrick A1 - Books, Sebastian A1 - Neuleitner, Nikolaus A1 - Rechenauer, Christian A1 - Steffens, Oliver A1 - Kusterle, Wolfgang A1 - Gömmel, Roland A1 - Wellnitz, Felix A1 - Stierstorfer, Johannes A1 - Stadler, Dominik A1 - Hofmann, Matthias J. A1 - Motschmann, Hubert A1 - Shamonin (Chamonine), Mikhail A1 - Bleicher, Veronika A1 - Fischer, Sebastian A1 - Hackenberg, Rudolf A1 - Horn, Anton A1 - Kawasch, Raphael A1 - Petzenhauser, Michael A1 - Probst, Tobias A1 - Udalzow, Anton A1 - Dams, Florian A1 - Schreiner, Rupert A1 - Langer, Christoph A1 - Prommesberger, Christian A1 - Ławrowski, Robert Damian ED - Baier, Wolfgang T1 - Forschungsbericht 2016 T3 - Forschungsberichte der OTH Regensburg - 2016 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-13840 CY - Regensburg ER - TY - JOUR A1 - Lautenschläger, Toni A1 - Leis, Alexander A1 - Dendorfer, Sebastian A1 - Palm, Christoph A1 - Schreiner, Rupert A1 - Langer, Christoph A1 - Prommesberger, Christian A1 - Ławrowski, Robert Damian A1 - Dams, Florian A1 - Bornmann, Benjamin A1 - Navitski, Aliaksandr A1 - Serbun, Pavel A1 - Müller, Günter A1 - Liebetruth, Thomas A1 - Kohlert, Dieter A1 - Pernsteiner, Jochen A1 - Schreier, Franz A1 - Heerklotz, Sabrina A1 - Heerklotz, Allwin A1 - Boos, Alexander A1 - Herwald, Dominik A1 - Monkman, Gareth J. A1 - Treiber, Daniel A1 - Mayer, Matthias A1 - Hörner, Eva A1 - Bentz, Alexander A1 - Shamonin (Chamonine), Mikhail A1 - Johansen, Søren Peter A1 - Reichel, Marco A1 - Stoll, Andrea A1 - Briem, Ulrich A1 - Dullien, Silvia A1 - Renkawitz, Tobias A1 - Weber, Tim A1 - Dendorfer, Sebastian A1 - Grifka, Joachim A1 - Penzkofer, Rainer A1 - Barnsteiner, K. A1 - Jovanovik, M. A1 - Wernecke, P. A1 - Vögele, A. A1 - Bachmann, T. A1 - Plötz, Martin A1 - Schliekmann, Claus A1 - Wels, Harald A1 - Helmberger, Paul A1 - Kaspar, Marcel A1 - Hönicka, M. A1 - Schrammel, Siegfried A1 - Enser, Markus A1 - Schmidmeier, Monika A1 - Schroll-Decker, Irmgard A1 - Haug, Sonja A1 - Gelfert, Verena A1 - Vernim, Matthias ED - Baier, Wolfgang T1 - Forschungsbericht 2012 T3 - Forschungsberichte der OTH Regensburg - 2012 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-7834 CY - Regensburg ER - TY - CHAP A1 - Langer, Christoph A1 - Hausladen, Matthias A1 - Prommesberger, Christian A1 - Ławrowski, Robert Damian A1 - Bachmann, Michael A1 - Düsberg, Felix A1 - Pahlke, Andreas A1 - Shamonin (Chamonine), Mikhail A1 - Schreiner, Rupert T1 - Field emission current investigation of p-type and metallized silicon emitters in the frequency domain T2 - International Vacuum Nanoelectronics Conference (IVNC), 31st, 2018, Kyoto, Japan N2 - We investigated two different field emitter arrays consisting of 10×10 p-type and 10×10 undoped Au-coated high aspect ratio silicon tips. The I-V characterization of the p-type sample showed a pronounced saturation for voltages higher than 500 V and a maximum emission current of 39 nA. The metallized sample revealed a FN-like emission up to several μA. The metallized and the p-type sample operating below the saturation region showed high current fluctuations of ±16%. Whereas, the metallized sample with current regulation and the p-type sample in the saturation yielded a current stability of ±0.4% and ±0.3%, respectively. Investigations in the frequency domain revealed the for field emission typical 1/f-noise. By operating in the saturation region (p-type sample) or using an emission current regulation (metallized sample) the noise level was reduced by at least 20 dB. Finally, the p-type sample was illuminated by a light emitting diode to increase and modulate the emission current in the saturation region. The emission current was increased by a factor of 3.7 to 145 nA. With this configuration we emulated an unstable emission behavior and evaluated the performance of our emission current regulation circuit. KW - field emission KW - field emitter array KW - silicon tip KW - current fluctuation KW - current stability KW - field emission noise Y1 - 2018 U6 - https://doi.org/10.1109/IVNC.2018.8520127 PB - IEEE ER - TY - JOUR A1 - Lohmeyer, Manfred A1 - Shamonin (Chamonine), Mikhail A1 - Hertel, Peter T1 - Boundary conditions for the finite difference beam propagation method based on plane wave solutions of the Fresnel equation JF - IEEE Journal of Quantum Electronics N2 - Each particular implementation of the beam propagation method (BPM) requires a special procedure allowing for radiation to leave the computational window. We propose a new approach to constructing the finite difference schemes of the BPM at the boundary of the computational window. These schemes are independent of the computed fields and allow for a similar treatment of both interior and boundary points. The new approach can be further improved by correcting the field values at the boundary points according to Hadley's method. The algorithm is easy to implement for both two- and three-dimensional structures. The new method considerably reduces computation times because the propagation matrices remain constant in longitudinally invariant sections, thus avoiding repeated LU-decompositions. The basic idea-establishing the finite difference scheme such that locally exact, approximate, or plausible solutions are recovered-may be of interest for other efforts to solve partial differential equations by the finite difference method. KW - Boundary conditions KW - Finite difference methods KW - Optical propagation KW - Matrix decomposition KW - Computational modeling KW - Refractive index KW - Maxwell equations KW - Sparse matrices KW - Partial differential equations KW - Shape Y1 - 1997 U6 - https://doi.org/10.1109/3.552269 SN - 0018-9197 VL - 33 IS - 2 SP - 279 EP - 286 ER - TY - JOUR A1 - Shamonin (Chamonine), Mikhail A1 - Lohmeyer, Manfred A1 - Hertel, Peter T1 - Analysis of power-dependent switching between radiatively coupled planar waveguides JF - Journal of Lightwave Technology N2 - Effective coupling between two remote optical waveguides without branching sections can be achieved in a three-guide system with multimode central waveguide. We investigate the nonlinear power switching of c.w. laser radiation by such radiatively coupled waveguides. It is shown that effective all-optical switches with spatially well separated input/output channels can be realized although the influence of multimode interference on the switching characteristics becomes more pronounced for increasing thickness of the central guide. Different coupling regimes are specified, and the changes in switching characteristics during the transformation from one regime to another is studied. Numerical calculations for the critical power are compared with an approximate analytical expression. It is also shown that, at a moderate input power, a small number of modes determines the switching behavior. KW - Electromagnetic coupling KW - Planar waveguide KW - Optical waveguides KW - Nonlinear optics KW - Optical coupling KW - Optical surface waves KW - Optical refraction KW - Optical variables control KW - Refractive index KW - Optical switches Y1 - 1997 UR - 1558-2213 U6 - https://doi.org/10.1109/50.588671 VL - 15 IS - 6 SP - 983 EP - 989 PB - IEEE CY - New York ER - TY - JOUR A1 - Lohmeyer, Manfred A1 - Shamonin (Chamonine), Mikhail A1 - Bahlmann, N. A1 - Hertel, Peter A1 - Dotsch, H. T1 - Radiatively Coupled Waveguide Concept for an Integrated Magneto-Optic Circulator JF - MRS Online Proceedings Library N2 - Three-guide couplers with multimode central waveguides allow for remote coupling between optical channels. A simple three mode approximation turns out to be sufficient for the description of the main features of the power transfer behavior. The specific form of the relevant modes suggests the design of integrated optical isolators and circulators based on magnetic garnet materials. These novel devices are superior to conventional nonreciprocal couplers with respect to the total length and admissible fabrication tolerances. We characterize the isolation performance and the transmission loss for the proposed devices by propagating mode simulations and estimate the influence of geometry parameter deviations. Y1 - 1998 U6 - https://doi.org/10.1557/PROC-517-519 SN - 1946-4274 IS - 517 SP - 519 EP - 524 ER - TY - JOUR A1 - Shamonin (Chamonine), Mikhail A1 - Lohmeyer, Manfred A1 - Hertel, Peter T1 - Directional coupler based on radiatively coupled waveguides JF - Applied optics (Appl. Opt.) N2 - We investigate a system of two waveguides with leaky modes sharing a common substrate (radiatively coupled waveguides). The main advantage of such a system is the possibility of remote coupling. A perturbation theory is developed for both TE and TM polarization. Numerical calculations of dispersion curves and of the coupling length allow us to determine the limitations of the perturbation theory. We study the influence of multimode interference on the process of beating by considering the propagation of a given initial field. Finally, we propose a new design for an effective, integrated optical TE-TM polarization splitter. Y1 - 1997 UR - https://opg.optica.org/ao/abstract.cfm?URI=ao-36-3-635 U6 - https://doi.org/10.1364/ao.36.000635 VL - 36 IS - 3 SP - 635 EP - 641 ER - TY - GEN A1 - Sorokin, Vladislav V. A1 - Stepanov, Gennady V. A1 - Vasiliev, V. G. A1 - Kramarenko, Elena Yu A1 - Mayer, Matthias A1 - Shamonin (Chamonine), Mikhail A1 - Monkman, Gareth J. T1 - Investigation of Dynamic Modulus and Normal Force of Magnetorheological Elastomers with Soft and Hard Magnetic Fillers T2 - NANO 2014, July 13 – 18, 2014, Moscow ; Section 06 - Polymer, Organic and Other Soft Matter Materials Y1 - 2014 CY - Moscow ER - TY - CHAP A1 - Forster, Eva A1 - Mayer, Matthias A1 - Rabindranath, Raman A1 - Bentz, Alexander A1 - Böse, Holger A1 - Shamonin (Chamonine), Mikhail A1 - Monkman, Gareth J. T1 - Surface Control Magneto-Active Polymers (MAP) T2 - EuroEAP 2011, First international conference on Electromechanically Active Polymer (EAP) transducers & artificial muscles, Pisa, 8-9 June N2 - Smart materials change their properties with external energy supply. Besides the known ferro-fluids and Magneto Rheological Fluid (MRF) also the Electro Active Polymer (EAP) and Magneto Rheological Elastomer (MRE) belong to these intelligent materials. The latest generation of magnetic elastomers represents a new class of composite materials. This consists of small magnetized particles which are sized in the micron or even nanometer range that in turn is bounded in a highly elastic rubber matrix. These materials are very often called MRE. Only recently, it has managed to develop these materials even further, so that very soft composite materials with a young?s modulus up to 10 kPa are possible. These soft polymers could be named magneto-active polymers. The combination of polymers with magnetic materials show novel and often enhanced properties. A precisely controllable young?s modulus and hardness, giant and non-homogeneous deformation behavior and rapid response to the magnetic field opens up new possibilities for various applications. Since MAP represent a very new technology, the behavior of these materials as a function of their composition and external conditions so far are not yet sufficiently understood. Therefore, some fundamental studies are necessary. In this paper, the mechanical surface properties are studied using a micro hardness meter. This work shows the possibility to control mechanical properties at the surface of MAP with new developed magnetic systems. Y1 - 2011 ER - TY - JOUR A1 - Radkovskaya, Anna A. A1 - Sydoruk, O. A1 - Shamonin (Chamonine), Mikhail A1 - Shamonina, Ekaterina A1 - Stevens, C. J. A1 - Faulkner, Grahame A1 - Edwards, David J. A1 - Solymar, L. T1 - Experimental study of a bi-periodic magnetoinductive waveguide: comparison with theory JF - IET Microwaves, Antennas & Propagation N2 - Magnetoinductive waves propagating along a line consisting of two kinds of metamaterial elements are studied. Both elements are made up by the same metallic loop but are loaded by different capacitors resulting in different resonant frequencies. The dispersion characteristics are derived from phase and amplitude measurements for the cases when the line consists of (i) identical elements and (ii) of alternating elements. Both planar (elements in the same plane as the axis of the line) and axial (elements perpendicular to the axis of the line) configurations are investigated. It is shown that in the bi-periodic arrangement of the elements, the dispersion curves have a forward wave in the lower frequency branch and a backward wave in the upper frequency branch independent of the configuration whether it is planar or axial. Comparisons between theoretical and experimental results show good agreement. KW - magnetic materials KW - metamaterials KW - wave propagation KW - dispersion (wave) KW - waveguides Y1 - 2007 U6 - https://doi.org/10.1049/iet-map:20050289 SN - 1751-8733 VL - 1 IS - 1 SP - 80 EP - 83 PB - IET ER - TY - CHAP A1 - Mayer, Matthias A1 - Forster, Eva A1 - Rabindranath, Raman A1 - Bentz, Alexander A1 - Böse, Holger A1 - Shamonin (Chamonine), Mikhail A1 - Monkman, Gareth J. T1 - Highly compliant Magneto-Active Polymers (MAPs) T2 - Actuator'11, Bremen, May 2011 Y1 - 2011 ER - TY - JOUR A1 - Sydoruk, O. A1 - Shamonin (Chamonine), Mikhail A1 - Radkovskaya, Anna A. A1 - Zhuromskyy, Oleksandr A1 - Shamonina, Ekaterina A1 - Trautner, Ralph A1 - Stevens, C. J. A1 - Faulkner, Grahame A1 - Edwards, David J. A1 - Solymar, L. T1 - Mechanism of subwavelength imaging with bilayered magnetic metamaterials: Theory and experiment JF - Journal of Applied Physics N2 - We present a theoretical and experimental study of a bilayered metamaterial structure for subwavelength imaging of magnetic field. The simplest version of such a structure consists of one or two linear arrays of capacitively loaded split pipe resonators. Its subwavelength physics is governed by strongly anisotropic magnetic coupling between individual resonators and by propagation of magnetoinductive waves with wavelength much shorter than the wavelength of the electromagnetic radiation in free space. It is shown that magnetoinductive waves propagating in the lateral direction are undesirable because they spread the image. Good subwavelength imaging is achieved when, due to the strong interlayer coupling, a stop band in the vicinity of the resonant frequency appears in the dispersion characteristics. The imaging properties of the single and double lens are compared and it is shown that the double lens has a superior performance. Excellent agreement is obtained between experimental and theoretical results for the magnetic field in the image plane in the operation frequency range of 30–60 MHz. It is shown that the same mechanism is responsible for image formation using bilayered planar metamaterial structures and a design of such a lens comprising two planar layers with a total of 542 elements is provided. The conclusions are not restricted to the radio frequency region because the elements can be scaled down. Y1 - 2007 U6 - https://doi.org/10.1063/1.2714782 VL - 101 IS - 7 PB - AIP ER - TY - JOUR A1 - Radkovskaya, Anna A. A1 - Sydoruk, O. A1 - Shamonin (Chamonine), Mikhail A1 - Stevens, C. J. A1 - Faulkner, Grahame A1 - Edwards, David J. A1 - Shamonina, Ekaterina A1 - Solymar, L. T1 - Transmission properties of two shifted magnetoinductive waveguides JF - Microwave and Optical Technology Letters N2 - Transmission properties of magnetoinductive waves propagating in two coupled one-dimensional metamaterial arrays are studied both experimentally and theoretically for the case when one of the arrays is shifted relative to the other one. Two different kinds of resonant metamaterial elements, split-pipe and spiral resonators, are investigated in the frequency bands centred at 46.2 and 586 MHz, respectively. It is shown that within a certain frequency range close to the resonant frequencies the transmission is strongly dependent on the shift. Theoretical calculations based on the impedance matrix show good agreement with the experimental results Y1 - 2007 U6 - https://doi.org/10.1002/mop.22344 VL - 49 IS - 5 SP - 997 EP - 1230 PB - Wiley ER - TY - CHAP A1 - Forster, Eva A1 - Rabindranath, Raman A1 - Mayer, Matthias A1 - Bentz, Alexander A1 - Böse, Holger A1 - Shamonin (Chamonine), Mikhail A1 - Monkman, Gareth J. T1 - Characterization of ultra soft Magneto-Active Polymers (MAPs) T2 - Conference proceedings / INDUCTICA 2011, Berlin, Germany, 24 - 26 May Y1 - 2011 ER - TY - JOUR A1 - Savelev, Dmitrii V. A1 - Glavan, Gašper A1 - Belan, Viktoria O. A1 - Belyaeva, Inna A. A1 - Fetisov, Leonid Y. A1 - Shamonin (Chamonine), Mikhail T1 - Resonant Magnetoelectric Effect at Low Frequencies in Layered Polymeric Cantilevers Containing a Magnetoactive Elastomer JF - Applied Sciences N2 - In this work, the resonance enhancement of magnetoelectric (ME) coupling at the two lowest bending resonance frequencies was investigated in layered cantilever structures comprising a magnetoactive elastomer (MAE) slab and a commercially available piezoelectric polymer multilayer. A cantilever was fixed at one end in the horizontal plane and the magnetic field was applied horizontally. Five composite structures, each containing an MAE layer of different thicknesses from 0.85 to 4 mm, were fabricated. The fundamental bending resonance frequency in the absence of a magnetic field varied between roughly 23 and 55 Hz. It decreased with the increasing thickness of the MAE layer, which was explained by a simple theory. The largest ME voltage coefficient of about 7.85 V/A was measured in a sample where the thickness of the MAE layer was ≈2 mm. A significant increase in the bending resonance frequencies in the applied DC magnetic field of 240 kA/m up to 200% was observed. The results were compared with alternative designs for layered multiferroic structures. Directions for future research were also discussed. KW - flexible composite KW - low frequency KW - magnetoactive elastomer KW - magnetoelectric effect KW - piezoelectric polymer Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-30637 N1 - corresponding authors: Dmitry V. Saveliev and Mikhail Shamonin VL - 12 IS - 4 SP - 1 EP - 13 PB - MPDI ER - TY - JOUR A1 - Fetisov, Yuri K. A1 - Chashin, Dmitri V. A1 - Savelev, Dmitrii V. A1 - Fetisov, Leonid Y. A1 - Shamonin (Chamonine), Mikhail T1 - Anisotropic Magnetoelectric Effect in a Planar Heterostructure Comprising Piezoelectric Ceramics and Magnetostrictive Fibrous Composite JF - Materials N2 - The direct magnetoelectric (ME) effect is investigated in a planar structure comprising mechanically coupled layers of a magnetostrictive fibrous composite (MFC) and a piezoelectric ceramics (lead zirconate titanate, PZT). The MFC is an array of Ni-wires with a diameter of 200 mu m that are aligned parallel to each other in a single layer. The wires are separated by a distance of 250 or 500 mu m and fixed in a polyamide matrix. The structure was placed in a tangential constant field H and was excited by an alternating magnetic field h parallel to H, while the voltage generated by the PZT layer was measured. The resulting field dependences of the magnetization M(H) and the magnetostriction lambda(H) were determined by the orientation of the field H in the plane of the structure and the distance between the Ni-wires. The ME coupling coefficient of the structure decreased from 4.8 to 0.25 V/A when the orientation of H was changed from parallel to perpendicular to Ni-wires. With an increase in the excitation field amplitude h, a nonlinear ME effect in the output voltage, namely frequency doubling, was observed. The frequency and field dependences of the efficiency of the ME transduction in the MFC-piezoelectric heterostructure are well described by the existing theory. KW - composite KW - frequency doubling KW - heterostructure KW - magnetoelectric effect KW - magnetostrictive fiber KW - piezoelectric ceramic material Y1 - 2019 U6 - https://doi.org/10.3390/ma12193228 N1 - Corresponding authors: Yuri Fetisov, Mikhail Shamonin VL - 12 IS - 19 SP - 1 EP - 13 PB - MDPI CY - Basel ER - TY - RPRT A1 - Rabindranath, Raman A1 - Böse, Holger A1 - Probst, Jörn A1 - Schlunck, Günther A1 - Mayer, Matthias A1 - Forster, Eva A1 - Bentz, Alexander A1 - Shamonin (Chamonine), Mikhail A1 - Monkman, Gareth J. T1 - EAP mit magnetisch steuerbarer Elastizität zur Interaktion mit Bindegewebszellen MagElan BT - Teilvorhaben (HS-Regensburg) "Etablierung eines mechatronischen Systems zur (Magneto) Elastophorese von Bindegewebszellen" ; Schlussbericht ; Verbundprojekt "MagElan" ; Laufzeit des Vorhabens: 01.07.2009 - 30.10.2011 Y1 - 2012 N1 - Förderkennzeichen BMBF 13N10574 CY - Regensburg ER - TY - JOUR A1 - Savelev, Dmitrii V. A1 - Chashin, Dmitri V. A1 - Fetisov, Leonid Y. A1 - Shamonin (Chamonine), Mikhail A1 - Fetisov, Yuri K. T1 - Ceramic-Heterostructure-Based Magnetoelectric Voltage Transformer with an Adjustable Transformation Ratio JF - Materials N2 - A voltage transformer employing the magnetoelectric effect in a composite ceramic heterostructure with layers of a magnetostrictive nickel–cobalt ferrite and a piezoelectric lead zirconate–titanate is described. In contrast to electromagnetic and piezoelectric transformers, a unique feature of the presented transformer is the possibility of tuning the voltage transformation ratio K using a dc magnetic field. The dependences of the transformer characteristics on the frequency and the amplitude of the input voltage, the strength of the control magnetic field and the load resistance are investigated. The transformer operates in the voltage range between 0 and 112 V, and the voltage transformation ratio K is tuned between 0 and 14.1 when the control field H changes between 0 and 6.4 kA/m. The power at the transformer output reached 63 mW, and the power conversion efficiency was 34%. The methods for calculation of the frequency response, and the field and load characteristics of the transformer are proposed. The ways to improve performance characteristics of magnetoelectric transformers and their possible application areas are discussed. KW - magnetoelectric effect KW - piezoelectric effect KW - voltage transformer KW - composite material KW - magnetostriction Y1 - 2020 U6 - https://doi.org/10.3390/ma13183981 VL - 13 IS - 18 SP - 1 EP - 13 PB - MDPI ER - TY - JOUR A1 - Romeis, Dirk A1 - Kostrov, Sergei A. A1 - Kramarenko, Elena Yu A1 - Stepanov, Gennady V. A1 - Shamonin (Chamonine), Mikhail A1 - Saphiannikova, Marina T1 - Magnetic-field-induced stress in confined magnetoactive elastomers JF - Soft Matter N2 - We present a theoretical approach for calculating the state of stress induced by a uniform magnetic field in confined magnetoactive elastomers of arbitrary shape. The theory explicitly includes the magnetic field generated by magnetizable spherical inclusions in the sample interior assuming a non-linear magnetization behavior. The initial spatial distribution of particles and its change in an external magnetic field are considered. This is achieved by the introduction of an effective demagnetizing factor where both the sample shape and the material microstructure are taken into account. Theoretical predictions are fitted to the stress data measured using a specifically designed experimental setup. It is shown that the theory enables the quantification of the effect of material microstructure upon introducing a specific microstructural factor and its derivative with respect to the extensional strain in the undeformed state. The experimentally observed differences between isotropic and anisotropic samples, compliant and stiff elastomer matrices are explained. Y1 - 2020 U6 - https://doi.org/10.1039/D0SM01337D VL - 16 IS - 39 SP - 9047 EP - 9058 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Snarskii, Andrei A. A1 - Shamonin (Chamonine), Mikhail A1 - Yuskevich, Pavel A1 - Savelev, Dmitrii V. A1 - Belyaeva, Inna A. T1 - Induced anisotropy in composite materials with reconfigurable microstructure: Effective medium model with movable percolation threshold JF - Physica A: Statistical Mechanics and its Applications N2 - In composite materials, with field-dependent restructuring of the filler material (changes in the mutual arrangement of inclusions), the presence of an external magnetic field induces anisotropy of the dielectric properties, even if the composite is isotropic in the absence of an external field. A modified effective medium approximation is proposed for the calculation of the components of effective permittivity within a class of composites with reconfigurable microstructure, where both phases (the filler and the matrix) are isotropic and the inclusions have spherical shape. The effective physical properties are calculated in the parallel and perpendicular directions to an applied field. The appearance of the anisotropy of the permittivity is simulated by the introduction of two not-equal, possibly variable (field-dependent) percolation thresholds. The implications, of the proposed theoretical approach, are demonstrated for the case of the dielectric properties of magnetoactive elastomers (MAEs). In MAEs with soft polymer matrices, the mutual arrangement of micrometer-sized magnetic inclusions can significantly change in an applied magnetic field. A reasonable agreement between theory and experiment at a measurement frequency of 1 kHz is found, and is improved in comparison to the previous models. The components of the effective permittivity tensor, characterizing the dielectric properties along the direction of the applied magnetic field and in the orthogonal direction, grow with an increasing field. This growth is more pronounced for the permittivity component in the field direction. The possible extensions of the theoretical model and future directions of research are discussed. The presented theoretical approach can be useful for the application-driven development of a number of smart materials, in particular electro- and magnetorheological gels, elastomers and fluids. KW - Effective medium theory KW - Magnetoactive elastomer KW - Percolation threshold KW - Anisotropy KW - Effective permittivity KW - Random heterogeneous medium Y1 - 2020 U6 - https://doi.org/10.1016/j.physa.2020.125170 VL - 560 IS - December PB - Elsevier ER - TY - JOUR A1 - Glavan, Gašper A1 - Belyaeva, Inna A. A1 - Ruwisch, Kevin A1 - Wollschlaeger, Joachim A1 - Shamonin (Chamonine), Mikhail T1 - Magnetoelectric Response of Laminated Cantilevers Comprising a Magnetoactive Elastomer and a Piezoelectric Polymer, in Pulsed Uniform Magnetic Fields JF - Sensors N2 - The voltage response to pulsed uniform magnetic fields and the accompanying bending deformations of laminated cantilever structures are investigated experimentally in detail. The structures comprise a magnetoactive elastomer (MAE) slab and a commercially available piezoelectric polymer multilayer. The magnetic field is applied vertically and the laminated structures are customarily fixed in the horizontal plane or, alternatively, slightly tilted upwards or downwards. Six different MAE compositions incorporating three concentrations of carbonyl iron particles (70 wt%, 75 wt% and 80 wt%) and two elastomer matrices of different stiffness are used. The dependences of the generated voltage and the cantilever's deflection on the composition of the MAE layer and its thickness are obtained. The appearance of the voltage between the electrodes of a piezoelectric material upon application of a magnetic field is considered as a manifestation of the direct magnetoelectric (ME) effect in a composite laminated structure. The ME voltage response increases with the increasing total quantity of the soft-magnetic filler in the MAE layer. The relationship between the generated voltage and the cantilever's deflection is established. The highest observed peak voltage around 5.5 V is about 8.5-fold higher than previously reported values. The quasi-static ME voltage coefficient for this type of ME heterostructures is about 50 V/A in the magnetic field of approximate to 100 kA/m, obtained for the first time. The results could be useful for the development of magnetic field sensors and energy harvesting devices relying on these novel polymer composites. KW - cantilever KW - composites KW - DEMAGNETIZING FACTORS KW - direct magnetoelectric effect KW - laminated structure KW - magnetic field sensor KW - magnetoactive elastomer KW - piezoelectric polymer Y1 - 2021 U6 - https://doi.org/10.3390/s21196390 N1 - Corresponding authors: Gašper Glavan, Mikhail Shamonin VL - 21 IS - 19 SP - 1 EP - 19 PB - MDPI CY - Basel ER - TY - JOUR A1 - Savelev, Dmitrii V. A1 - Belyaeva, Inna A. A1 - Chashin, Dmitri V. A1 - Fetisov, Leonid Y. A1 - Romeis, Dirk A1 - Kettl, Wolfgang A1 - Kramarenko, Elena Yu A1 - Saphiannikova, Marina A1 - Stepanov, Gennady V. A1 - Shamonin (Chamonine), Mikhail T1 - Giant extensional strain of magnetoactive elastomeric cylinders in uniform magnetic fields JF - Materials N2 - Elongations of magnetoactive elastomers (MAEs) under ascending–descending uniform magnetic fields were studied experimentally using a laboratory apparatus specifically designed to measure large extensional strains (up to 20%) in compliant MAEs. In the literature, such a phenomenon is usually denoted as giant magnetostriction. The synthesized cylindrical MAE samples were based on polydimethylsiloxane matrices filled with micrometer-sized particles of carbonyl iron. The impact of both the macroscopic shape factor of the samples and their magneto-mechanical characteristics were evaluated. For this purpose, the aspect ratio of the MAE cylindrical samples, the concentration of magnetic particles in MAEs and the effective shear modulus were systematically varied. It was shown that the magnetically induced elongation of MAE cylinders in the maximum magnetic field of about 400 kA/m, applied along the cylinder axis, grew with the increasing aspect ratio. The effect of the sample composition is discussed in terms of magnetic filler rearrangements in magnetic fields and the observed experimental tendencies are rationalized by simple theoretical estimates. The obtained results can be used for the design of new smart materials with magnetic-field-controlled deformation properties, e.g., for soft robotics. KW - magnetostriction KW - magnetoactive elastomer KW - extensional strain KW - hysteresis KW - magnetomechanical effect KW - magnetodeformation Y1 - 2020 U6 - https://doi.org/10.3390/ma13153297 SN - 1996-1944 N1 - Corresponding author: Mikhail Shamonin VL - 13 IS - 15 SP - 1 EP - 17 PB - MDPI CY - Basel ER - TY - JOUR A1 - Savelev, Dmitrii V. A1 - Fetisov, Leonid Y. A1 - Chashin, Dmitri V. A1 - Fetisov, Yuri K. A1 - Khon, Anastasia A1 - Shamonin (Chamonine), Mikhail T1 - Effects of ferromagnetic-material thickness on magnetoelectric voltage transformation in a multiferroic heterostructure JF - Smart Materials and Structures N2 - A magnetoelectric (ME) voltage transformer is fabricated on the basis of a ferromagnetic (FM)-piezoelectric (PE) heterostructure comprising two equally thick laminated layers of an amorphous FM alloy and a piezoceramic lead zirconate-titanate layer sandwiched between them. The structure, placed inside an excitation coil, is electrically poled and magnetized in the direction of the long axis. The primary voltage is applied to the coil and the secondary voltage is measured between the electrodes of the PE material. It is shown for the first time that the change in the total thickness of magnetic layers significantly influences the transformer ' s characteristics. At the largest total thickness of FM layers of 138 mu m, the open-circuit voltage transformation ratio K has a maximum value of about 20, and the power transfer efficiency eta at a matched resistive load of about 20 k omega reaches 45%. The variation of the control magnetic field in the range of 0-21.6 kA m(-1) makes it possible to change the voltage transformation ratio K from zero to the maximum value. A simple model allows one to calculate the dependence of the characteristics of the ME transformer on the frequency of the primary voltage, thickness of the FM layers, control magnetic field, and the load. KW - magnetoelectric effect KW - magnetostriction KW - multiferroic heterostructure KW - piezoelectric effect KW - voltage transformer Y1 - 2021 U6 - https://doi.org/10.1088/1361-665X/abf6c0 VL - 30 IS - 6 PB - IOP PUBLISHING ER - TY - JOUR A1 - Savelev, Dmitrii V. A1 - Belyaeva, Inna A. A1 - Chashin, Dmitri V. A1 - Fetisov, Leonid Y. A1 - Shamonin (Chamonine), Mikhail T1 - Large Wiedemann effect in a magnetoactive elastomer JF - Journal of Magnetism and Magnetic Materials N2 - Large twists of a soft tube (hollow cylinder) in helical magnetic fields are presented for the first time. Such a phenomenon is usually denoted as the Wiedemann effect. The tube is fabricated from a soft magnetoactive elastomer material with the shear modulus of about 56 kPa. The composite material comprises 80 mass% of micrometer-sized iron particles embedded into a polydimethylsiloxane matrix. The circular magnetic field is generated by an electric current in a straight wire passing through the inner hole of the tube. The maximum value of approximately 350″/cm is observed in a longitudinal magnetic field of a few kA/m overlapped with a circumferential magnetic field of about 1.4 kA/m on the surface of the inner hole. A pronounced hysteresis in the dependence of the Wiedemann effect on the circular magnetic field is found. The ways to enhance the Wiedemann twist in magnetoactive elastomers are discussed. The observed large effect is promising for application in magnetic-field controlled torsional actuators, in particular for soft robotics. Y1 - 2020 U6 - https://doi.org/10.1016/j.jmmm.2020.166969 VL - 511 IS - October PB - Elsevier ER - TY - JOUR A1 - Savelev, Dmitrii V. A1 - Fetisov, Leonid Y. A1 - Chashin, Dmitri V. A1 - Shabin, P. A. A1 - Vyunik, D. A. A1 - Fedulov, Feodor A1 - Kettl, Wolfgang A1 - Shamonin (Chamonine), Mikhail T1 - Method of Measuring Deformations of Magnetoactive Elastomers under the Action of Magnetic Fields JF - Russian Technological Journal Y1 - 2019 U6 - https://doi.org/10.32362/2500-316x-2019-7-4-81-91 VL - 7 IS - 4 SP - 81 EP - 91 ER - TY - GEN A1 - Pershina, K. V. A1 - Savelev, Dmitrii V. A1 - Glavan, Gašper A1 - Chashin, Dmitri V. A1 - Belyaeva, Inna A. A1 - Fetisov, Leonid Y. A1 - Shamonin (Chamonine), Mikhail T1 - The voltage response of a structure comprising a magnetoactive-elastomer cylinder and a piezoelectric material to magnetic field step excitations T2 - The 4th International Baltic Conference on Magnetism (IBCM 2021) : Svetlogorsk, Russia August 29 - September 2, 2021 : Book of Abstracts Y1 - 2021 UR - http://smba.science/wp-content/uploads/2021/10/IBCM-2021-Book-of-Abstracts-5.pdf SP - 182 PB - Immanuel Kant Baltic Federal University, Kaliningrad, Russia ER - TY - JOUR A1 - Dillinger, Andrea Elisabeth A1 - Weber, Gregor R. A1 - Mayer, Matthias A1 - Schneider, Magdalena A1 - Göppner, Corinna A1 - Ohlmann, Andreas A1 - Shamonin (Chamonine), Mikhail A1 - Monkman, Gareth J. A1 - Fuchshofer, Rudolf A1 - Keller, Kate A1 - Lozano, Diana C. A1 - Clark, Abbot T1 - CCN2/CTGF-A Modulator of the Optic Nerve Head Astrocyte JF - Frontiers in cell and developmental biology (Front Cell Dev Biol.) N2 - In primary open-angle glaucoma (POAG), a neurodegenerative disease of the optic nerve (ON) and leading cause of blindness, the optic nerve head (ONH) undergoes marked structural extracellular matrix (ECM) changes, which contribute to its permanent deformation and to degeneration of ON axons. The remodeling process of the ECM causes changes in the biomechanical properties of the ONH and the peripapillary sclera, which is accompanied by an increased reactivity of the resident astrocytes. The molecular factors involved in the remodeling process belong to the Transforming growth factor (TGF)-β superfamily, especially TGF-β2. In previous publications we showed that TGF-β2 induced ECM alterations are mediated by Cellular Communication Network Factor (CCN)2/Connective Tissue Growth Factor (CTGF) and recently we showed that CCN2/CTGF is expressed by astrocytes of the ON under normal conditions. In this study we wanted to get a better understanding of the function of CCN2/CTGF under normal and pathologic conditions. To this end, we analyzed the glial lamina and peripapillary sclera of CCN2/CTGF overexpressing mice and studied the effect of CCN2/CTGF and increasing substratum stiffness on murine ON astrocytes in vitro. We observed enhanced astrocyte reactivity in the ONH, increased ECM protein synthesis in the peripapillary sclera and increased Ccn2/Ctgf expression in the ONH during the pathologic development in situ. CCN2/CTGF treatment of primary murine ON astrocytes induced a higher migration rate, and increase of ECM proteins including fibronectin, elastin and collagen type III. Furthermore, the astrocytes responded to stiffer substratum with increased glial fibrillary acidic protein, vimentin, actin and CCN2/CTGF synthesis. Finally, we observed the reinforced appearance of CCN2/CTGF in the lamina cribrosa of glaucomatous patients. We conclude that reactive changes in ONH astrocytes, induced by the altered biomechanical characteristics of the region, give rise to a self-amplifying process that includes increased TGF-β2/CCN2/CTGF signaling and leads to the synthesis of ECM molecules and cytoskeleton proteins, a process that in turn augments the stiffness at the ONH. Such a scenario may finally result in a vicious circle in the pathogenesis of POAG. The transgenic CTGF-overexpressing mouse model might be an optimal model to study the chronic pathological POAG changes in the ONH. KW - astrocytes KW - extracellar matrix KW - glaucoma KW - glial lamina KW - growth factors KW - optic nerve KW - stiffness Y1 - 2022 U6 - https://doi.org/10.3389/fcell.2022.864433 VL - 10 PB - frontiers ER - TY - JOUR A1 - Savelev, Dmitrii V. A1 - Glavan, Gašper A1 - Burdin, Dmitrii A. A1 - Belyaeva, Inna A. A1 - Fetisov, Leonid Y. A1 - Shamonin (Chamonine), Mikhail A1 - Fetisov, Yuri K. T1 - Enhancement of magnetoelectric effect in polymer composites at low resonance frequencies by operation in the transverse-transverse mode JF - Journal of Magnetism and Magnetic Materials N2 - The resonant direct magnetoelectric (ME) effect for a series of multilayer heterostructures comprising a magnetoactive elastomer (MAE) of different thicknesses and a commercially available piezoelectric polyvinylidene fluoride-based vibration sensor has been investigated in detail. The specimens were rigidly fixed at one end as cantilevers. The cantilevers were operated in the transverse-transverse (T-T) mode, where both magnetic and electric fields were perpendicular to the plane of a non-deformed heterostructure. It is shown that the ME voltage coefficient of considered heterostructures in the T-T mode can be about 20-fold higher than in the conventional longitudinal–transverse (L-T) mode. The highest ME voltage coefficient reached about 150 V/(Oe·cm) at the first bending oscillation mode for the sample with MAE layer thickness of 4 mm. Mechanism of the resonant ME effect in T-T mode is explained using theory of critical bending of MAE cantilevers. Magnetic fields, when the ME voltage reaches its maximum, strongly depended on the MAE layer thickness, and could be associated with the critical field, where the structure commences to strongly bend. The non-monotonous dependence of the resonance frequency of the first oscillation mode on magnetic field strength was observed. The shift of the resonance frequency in the maximum magnetic field reached up to roughly 100 % in comparison with zero field. KW - Direct magnetoelectric effect KW - Magnetoactive elastomer KW - Piezoelectric polymer KW - Flexible composite KW - Low resonance frequency KW - Multilayer heterostructure Y1 - 2024 U6 - https://doi.org/10.1016/j.jmmm.2024.172020 SN - 1873-4766 SN - 0304-8853 VL - 598 PB - Elsevier ER - TY - JOUR A1 - Straus, Izidor A1 - Kravanja, Gaia A1 - Kriegl, Raphael A1 - Shamonin (Chamonine), Mikhail A1 - Drevenšek-Olenik, Irena A1 - Jezeršek, Matija A1 - Kokot, Gašper T1 - Laser Micromachining for Polymer Surface Topography Designt JF - JoVE journal : engineering N2 - Soft magnetoactive elastomers (MAEs) are smart materials that respond to external magnetic fields by dynamically altering their mechanical properties. They are composed of magnetically responsive microparticles embedded within a soft polymer matrix, exhibiting an effective shear modulus of up to 100 kPa. In recent decades, MAEs' bulk properties have been successfully exploited for applications such as dynamic vibration damping, vibration sensing, and actuation in soft robotics. Recent research has shifted to their surface properties, revealing promising results on tunable surface features such as roughness, adhesion, and wetting. Even the transport of small solid and fluid objects was demonstrated. The associated surface effects can be significantly enhanced through the precise engineering of surface topography. In this article, an efficient laser micromachining technique, with a resolution of 15 µm, is presented, which enables rapid prototyping of MAE surfaces. It allows the creation of various complex shapes and offers functionality beyond the one achievable with traditional molding techniques. Additionally, the approach is versatile and can be applied to any polymer that sufficiently absorbs the laser light. As an example, a lamellar surface micro-pattern fabrication process and its characterization by optical and scanning electron microscopies are shown. Its response to a magnetic field is demonstrated. The technique provides a flexible and fast solution for optimizing polymer surface design across a wide range of applications. Y1 - 2025 U6 - https://doi.org/10.3791/68126 PB - JoVE ER - TY - JOUR A1 - Roghani, Mehran A1 - Romeis, Dirk A1 - Glavan, Gašper A1 - Belyaeva, Inna A. A1 - Shamonin (Chamonine), Mikhail A1 - Saphiannikova, Marina T1 - Magnetically induced deformation of isotropic magnetoactive elastomers and its relation to the magnetorheological effect JF - Physical Review Applied N2 - Can isotropic magnetoactive elastomers (MAEs) undergo giant magnetically induced deformations and exhibit huge magnetorheological effects simultaneously? In this experimental and theoretical study, we reveal how the macroscopic deformation of MAEs relates to the process of particle restructuring caused by application of a magnetic field. For this purpose, MAE cylinders with different aspect ratios and particle loadings are studied in uniform magnetic fields. The axial deformations of the cylinders are acquired using an optical camera. A unified mean-field model proposed in previous studies is adapted to describe the transition of initially isotropic cylinders into transversely isotropic ones. This mechanical transition is caused by the rearrangement of particles into dense columnar structures aligned with the field and is believed to result in a huge magnetorheological effect. Our model however predicts less than a threefold increase in elastic moduli when evaluated along the field direction. This prediction is based on a careful examination of the shear moduli of studied MAEs and the columnar structures. A weak magnetorheological effect explains significant axial deformations measured in the field direction. A strong magnetorheological effect would hinder axial deformations due to an increase in the modulus by several orders of magnitude. Not only are the moduli and macroscopic deformations influenced by microstructure evolution, but so is the magnetization of particles, which increases as they rearrange into dense columns. With this study, we show that the unified mean-field model provides quantitative access to hidden material properties such as magnetization and stiffness in MAE samples with different shapes and evolving microstructures. Published by the American Physical Society 2025 Y1 - 2025 U6 - https://doi.org/10.1103/PhysRevApplied.23.034041 SN - 2331-7019 VL - 23 IS - 3 PB - American Physical Society (APS) ER - TY - GEN A1 - Glavan, Gašper A1 - Belyaeva, Inna A. A1 - Shamonin (Chamonine), Mikhail T1 - On the Piezomagnetism of Magnetoactive Elastomeric Cylinders in Uniform Magnetic Fields: Height Modulation in the Vicinity of an Operating Point by Time-Harmonic Fields [Data set] Y1 - 2024 U6 - https://doi.org/10.5281/zenodo.13834054 N1 - This is the data set for all the figures in the paper with the title: "On the Piezomagnetism of Magnetoactive Elastomeric Cylinders in Uniform Magnetic Fields: Height Modulation in the Vicinity of an Operating Point by Time-Harmonic Fields" published in the Polymers journal (doi:10.3390/polym16192706). ER - TY - GEN A1 - Glavan, Gašper A1 - Belyaeva, Inna A. A1 - Shamonin (Chamonine), Mikhail T1 - Multiferroic Cantilevers Containing a Magnetoactive Elastomer: Magnetoelectric Response to Low-Frequency Magnetic Fields of Triangular and Sinusoidal Waveform [Data set] Y1 - 2025 U6 - https://doi.org/10.5281/zenodo.14651784 N1 - This is the data set for all the figures in the paper with the title: "Multiferroic Cantilevers Containing a Magnetoactive Elastomer: Magnetoelectric Response to Low-Frequency Magnetic Fields of Triangular and Sinusoidal Waveform" published in the Sensor journal (doi:10.3390/s22103791). ER - TY - JOUR A1 - Glavan, Gašper A1 - Belyaeva, Inna A. A1 - Shamonin (Chamonine), Mikhail T1 - Multiferroic Cantilevers Containing a Magnetoactive Elastomer: Magnetoelectric Response to Low-Frequency Magnetic Fields of Triangular and Sinusoidal Waveform JF - Sensors N2 - In this work, multiferroic cantilevers comprise a layer of a magnetoactive elastomer (MAE) and a commercially available piezoelectric polymer-based vibration sensor. The structures are fixed at one end in the horizontal plane and the magnetic field is applied vertically. First, the magnetoelectric (ME) response to uniform, triangle-wave magnetic fields with five different slew rates is investigated experimentally. Time and field dependences of the generated voltage, electric charge, and observed mechanical deflection are obtained and compared for four different thicknesses of the MAE layer. The ME responses to triangular and sinusoidal wave excitations are examined in contrast. Second, the ME response at low frequencies (≤3 Hz) is studied by the standard method of harmonic magnetic field modulation. The highest ME coupling coefficient is observed in the bias magnetic field strength of ≈73 kA/m and it is estimated to be about 3.3 ns/m (ME voltage coefficient ≈ 25 V/A) at theoretically vanishing modulation frequency (f→0 Hz). Presented results demonstrate that the investigated heterostructures are promising for applications as magnetic-field sensors and energy harvesting devices. KW - magnetoactive elastomer KW - piezoelectric polymer KW - multilayer cantilever KW - direct magnetoelectric effect KW - magnetic field sensing Y1 - 2022 U6 - https://doi.org/10.3390/s22103791 N1 - Corresponding authors: Gašper Glavan und Mikhail Shamonin Veröffentlichtes Datenset: https://doi.org/10.5281/zenodo.14651784 VL - 22 IS - 10 SP - 1 EP - 17 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kriegl, Raphael A1 - Jezeršek, Matija A1 - Kravanja, Gaia A1 - Hribar, Luka A1 - Mukhi, Soham A1 - Kokot, Gašper A1 - Drevenšek‐Olenik, Irena A1 - Shamonin (Chamonine), Mikhail T1 - Tunable rebound of millimeter-sized rigid balls by magnetic actuation of elastomer-based surface microstructures JF - Smart Materials and Structures N2 - A novel method for controlling the rebound behavior of small balls made of Al2O3 with a radius of 2.381 mm is presented. It uses different types of micro-structured surfaces of soft magnetoactive elastomers. These surfaces were fabricated via laser micromachining and include fully ablated surfaces as well as micrometer-sized lamellas with a fixed width of 90 µm, height of 250 µm and three different gap sizes (15, 60 and 105 µm). The lamellas can change their orientation from edge-on to face-on configuration according to the direction of the external magnetic field from a permanent magnet. The orientation of the external magnetic field significantly influences the rebound behavior of the balls, from a coefficient of restitution e of to < 0.1. The highest relative change in the coefficient of restitution between zero field and face-on configuration of is observed for lamellas with a gap of 60 µm. Other characteristics of the ball rebound such as the penetration depth into an Magnetoactive elastomer and the maximum deceleration are investigated as well. The proposed method does not require a constant power supply due to the use of permanent magnets. It may find novel applications in the field of impact engineering. Y1 - 2024 U6 - https://doi.org/10.1088/1361-665X/ad41a9 N1 - Zugehöriges Datenset: https://doi.org/10.5281/zenodo.10419411 VL - 33 IS - 6 PB - IOP Publishing ER - TY - GEN A1 - Glavan, Gašper A1 - Belyaeva, Inna A. A1 - Shamonin (Chamonine), Mikhail A1 - Ruwisch, Kevin A1 - Wollschläger, Joachim T1 - Magnetoelectric Response of Laminated Cantilevers Comprising a Magnetoactive Elastomer and a Piezoelectric Polymer, in Pulsed Uniform Magnetic Fields [Data set] Y1 - 2025 U6 - https://doi.org/10.5281/zenodo.14652152 N1 - This is the data set for all the figures in the paper with the title: "Magnetoelectric Response of Laminated Cantilevers Comprising a Magnetoactive Elastomer and a Piezoelectric Polymer, in Pulsed Uniform Magnetic Fields" published in the Sensors journal (doi:10.3390/s21196390). ER - TY - GEN A1 - Glavan, Gašper A1 - Belyaeva, Inna A. A1 - Shamonin (Chamonine), Mikhail T1 - Transient Response of Macroscopic Deformation of Magnetoactive Elastomeric Cylinders in Uniform Magnetic Fields [Data set] Y1 - 2024 U6 - https://doi.org/10.5281/zenodo.10679499 N1 - This is the data set for all the figures in the paper with the title: "Transient Response of Macroscopic Deformation of Magnetoactive Elastomeric Cylinders in Uniform Magnetic Fields" published in the Polymers journal (doi:10.3390/polym16050586). ER - TY - JOUR A1 - Glavan, Gašper A1 - Belyaeva, Inna A. A1 - Shamonin (Chamonine), Mikhail T1 - Transient Response of Macroscopic Deformation of Magnetoactive Elastomeric Cylinders in Uniform Magnetic Fields JF - Polymers N2 - Significant deformations of bodies made from compliant magnetoactive elastomers (MAE) in magnetic fields make these materials promising for applications in magnetically controlled actuators for soft robotics. Reported experimental research in this context was devoted to the behaviour in the quasi-static magnetic field, but the transient dynamics are of great practical importance. This paper presents an experimental study of the transient response of apparent longitudinal and transverse strains of a family of isotropic and anisotropic MAE cylinders with six different aspect ratios in time-varying uniform magnetic fields. The time dependence of the magnetic field has a trapezoidal form, where the rate of both legs is varied between 52 and 757 kA/(s·m) and the maximum magnetic field takes three values between 153 and 505 kA/m. It is proposed to introduce four characteristic times: two for the delay of the transient response during increasing and decreasing magnetic field, as well as two for rise and fall times. To facilitate the comparison between different magnetic field rates, these characteristic times are further normalized on the rise time of the magnetic field ramp. The dependence of the normalized characteristic times on the aspect ratio, the magnetic field slew rate, maximum magnetic field values, initial internal structure (isotropic versus anisotropic specimens) and weight fraction of the soft-magnetic filler are obtained and discussed in detail. The normalized magnetostrictive hysteresis loop is introduced, and used to explain why the normalized delay times vary with changing experimental parameters. KW - magnetoactive elastomer KW - magnetorheological elastomer KW - macroscopic deformation KW - magnetostriction KW - time-varying magnetic field Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-71067 SN - 2073-4360 N1 - Corresponding author der OTH Regensburg: Gašper Glavan Zugehöriges Datenset: doi:10.5281/zenodo.10679499 VL - 16 IS - 5, Special Issue Magnetic Polymer Composites: Design and Application II PB - MDPI CY - Basel, Schweiz ER -