TY - INPR A1 - Burger, Moritz A1 - Bartsch, Alexander A1 - Grad, Marius A1 - Esper, Lukas A1 - Schultheiß, Ulrich A1 - Noster, Ulf A1 - Schratzenstaller, Thomas T1 - Enhancement of laser cut edge quality of ultra-thin titanium grade 2 sheets by applying in-process approach using modulated Yb:YAG continuous wave fibre laser N2 - Titanium is used in many areas due to its excellent mechanical, biological and corrosion-resistant properties. Implants often have thin and filigree structures, providing an ideal application for laser fine cutting. In literature, the main focus is primarily on investigating and optimizing the parameters for titanium sheet thicknesses greater than 1 mm. Hence, in this study, the basic manufacturing parameters of laser power, cutting speed and laser pulsing of a 200 W modulated fibre laser are investigated for 0.15 mm thick titanium grade 2 sheets. A reproducible, continuous cut could be achieved using 90 W laserpower and 2 cutting-speed. Pulse pause variations between 85–335 μs in 50 μs steps and fixed pulse duration of 50 μs show that a minimum kerf width of 23.4 μm, as well as a minimum cut edge roughness Rz of 3.59 μm, is achieved at the lowest pulse pause. An increase in roughness towards the laser exit side, independent of the laser pulse pause, was found and discussed. The results provide initial process parameters for cutting thin titanium sheets and thus provide the basis for further investigations, such as the influence of cutting gas pressure and composition on the cut edge. Y1 - 2023 U6 - https://doi.org/10.21203/rs.3.rs-2520041/v1 N1 - Erschienen in der Zeitschrift: Discover Mechanical Engineering, https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/docId/6564 ER - TY - JOUR A1 - Bartsch, Alexander A1 - Burger, Moritz A1 - Grad, Marius A1 - Esper, Lukas A1 - Schultheiß, Ulrich A1 - Noster, Ulf A1 - Schratzenstaller, Thomas T1 - Enhancement of laser cut edge quality of ultra-thin titanium grade 2 sheets by applying an in-process approach using modulated Yb:YAG continuous wave fiber laser JF - Discover Mechanical Engineering N2 - Titanium is used in many areas due to its excellent mechanical, biological and corrosion-resistant properties. Implants often have thin and filigree structures, providing an ideal application for fine cutting with laser. In the literature, the main focus is primarily on investigating and optimizing the parameters for titanium sheets with thicknesses greater than 1 mm. Hence, in this study, the basic manufacturing parameters of laser power, cutting speed and laser pulse of a 200 W modulated fiber laser are investigated for 0.15 mm thick grade 2 titanium sheets. A reproducible, continuous cut could be achieved using 90 W laser-power and 2 mm/s cutting-speed. Pulse pause variations between 85 and 335 μs in 50 μs steps and a fixed pulse width of 50 μs show that a minimum kerf width of 23.4 μm, as well as a minimum cut edge roughness Rz of 3.59 μm, is achieved at the lowest pulse pause duration. An increase in roughness towards the laser exit side, independent of the laser pulse pause duration, was found and discussed. The results provide initial process parameters for cutting thin titanium sheets and thus provide the basis for further investigations, such as the influence of cutting gas pressure and composition on the cut edge. KW - Laser cutting KW - Titanium sheet KW - Kerf Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-65647 N1 - Corresponding author: Alexander Bartsch VL - 2 IS - 10 PB - Springer ER -