TY - JOUR A1 - Weber, Felix A1 - Borchsenius, Fredrik A1 - Distl, Johann A1 - Braun, Christian T1 - Performance of Numerically Optimized Tuned Mass Damper with Inerter (TMDI) JF - Applied Sciences N2 - In recent years, the Tuned Mass Damper with inerter (TMDI) has received significant attention. The inerter is defined to exert a force that is in proportion to the relative acceleration of the two inerter terminals. Here, two TMDI topologies are investigated. The conventional topology is given by the inerter being in parallel to the spring and viscous damper of the TMDI. The other topology is the serial arrangement of spring, inerter and viscous damper being in parallel to the stiffness of the mass spring oscillator of the TMDI. While the first topology intends to increase the inertial force of the TMDI, the second topology aims at producing an additional degree of freedom. The considered TMDI concepts are simulated for harmonic and random excitations, with parameters set according to those described in the literature and with numerically optimized parameters which minimize the primary structure displacement response. The classical TMD is used as a benchmark. The findings are twofold. The conventional TMDI with typical inertance ratio of 1% and the very small value of 0.02% performs significantly worse than the classical TMD with the same mass ratio. In contrast, the TMDI with an additional degree of freedom can improve the mitigation of the primary structure if the inertance ratio is set very small and if the TMDI parameters are numerically optimized. KW - damping KW - inerter KW - optimization KW - TMD KW - TMDI KW - vibration Y1 - 2022 U6 - https://doi.org/10.3390/app12126204 VL - 12 IS - 12 SP - 1 EP - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Weber, Felix A1 - Huber, Peter A1 - Borchsenius, Fredrik A1 - Braun, Christian T1 - Performance of TMDI for Tall Building Damping JF - Actuators N2 - This study investigates the vibration reduction of tall wind-excited buildings using a tuned mass damper (TMD) with an inerter (TMDI). The performance of the TMDI is computed as a function of the floor to which the inerter is grounded as this parameter strongly influences the vibration reduction of the building and for the case when the inerter is grounded to the earth whereby the absolute acceleration of the corresponding inerter terminal is zero. Simulations are made for broadband and harmonic excitations of the first three bending modes, and the conventional TMD is used as a benchmark. It is found that the inerter performs best when grounded to the earth because, then, the inerter force is in proportion to the absolute acceleration of only the pendulum mass, but not to the relative acceleration of the two inerter terminals, which is demonstrated by the mass matrix. However, if the inerter is grounded to a floor below the pendulum mass, the TMDI only outperforms the TMD if the inerter is grounded to a floor within approximately the first third of the building’s height. For the most realistic case, where the inerter is grounded to a floor in the vicinity of the pendulum mass, the TMDI performs far worse than the classical TMD. KW - damping KW - inerter KW - simulation KW - tall building KW - TMD KW - TMDI KW - wind excitation Y1 - 2020 U6 - https://doi.org/10.3390/act9040139 VL - 9 IS - 4 SP - 1 EP - 13 PB - MPDI ER - TY - CHAP A1 - Tahedl, Michael A1 - Borchsenius, Fredrik A1 - Taras, Andreas T1 - Efficient earthquake simulation of stiff and high DOF bridge expansion joint models with Python T2 - Proceedings of the 10th ECCOMAS Thematic Conference on MULTIBODY DYNAMICS: December 12-15, 2021, Budapest, Hungary N2 - Various types of seismic protection devices has been developed to protect structures like bridges from collapse during an earthquake event, such as hydraulic or metallic hysteresis dampers and spherical pendulum bearings. The expansion joints however, which are already included in most large-span bridges, are not considered as an earthquake protection device regardless of the significant friction forces they produce. These friction forces can be seen as damping forces between the shaking environment and the oscillating bridge. To investigate the effect of those damping forces during different earthquake loads, a multibody dynamics simulation model of the expansion joints will be created. This model should be accurate enough to represent the generation of the damping forces and effects of the geometric setup of the expansion joints. Because large expansion joints for large-span bridges are of special interest, the number of degrees of freedom (DOF) becomes very high. Because this models include stiff bushings, implicit solvers need to be used to gain a stable simulation. Expansion joints are almost unique constructions for every specific bridge, which requires a automated model generation. Because of its excellent modules for numerical mathematics, the scripting language Python is used. To create an efficient simulation model, several optimization techniques such as Just-In-Time (JIT) compilation and parallelization are implemented and tested. KW - Parallelization KW - Optimization KW - Python KW - Earthquake Engineering Y1 - 2021 SN - 978-963-421-870-8 U6 - https://doi.org/10.3311/ECCOMASMBD2021-196 SP - 172 EP - 183 PB - Budapest University of Technology and Economics CY - Budapest, HU ER - TY - BOOK A1 - Rill, Georg A1 - Schaeffer, Thomas A1 - Borchsenius, Fredrik T1 - Grundlagen und computergerechte Methodik der Mehrkörpersimulation BT - Vertieft in Matlab-Beispielen, Übungen und Anwendungen N2 - Dieses Lehr- und Übungsbuch vermittelt auf anschauliche Weise die Methoden der Mehrkörpersimulation und verdeutlicht deren Vor- und Nachteile bei der praktischen Anwendung anhand konkreter Beispiele. Die einzelnen Methoden werden durch Matlab-Skripte und -Funktionen verdeutlicht, wobei die Modellbildung, die mathematische Beschreibung und die numerische Simulation von Systemen starrer Körper die Schwerpunkte bilden. Die vorliegende Auflage wurde unter anderem um Matlab-Live-Skripte erweitert, welche kleine Animationen zur Veranschaulichung der Dynamik der Probleme enthalten. Die Lösungen zu den Übungsbeispielen und die integrierten Matlab-Skripte sowie weitere Beispiele und Anwendungen stehen über QR-Codes zum Download zur Verfügung und ermöglichen dadurch auch ein effizientes Selbststudium. KW - ADAMS-Modell KW - McPherson-Achse KW - Euler-Parameter KW - Bushings KW - Kontaktelement KW - Kinematische Bindung KW - Räumliches Doppelpendel KW - Analyse MKS KW - Lumped Mass Modelle KW - SIMPACK-Modell KW - Sparse Matrix KW - Mehrkörpersystem KW - MATLAB KW - Dynamik KW - Simulation Y1 - 2023 U6 - https://doi.org/10.1007/978-3-658-41968-4 PB - Springer Nature ER - TY - BOOK A1 - Rill, Georg A1 - Schaeffer, Thomas A1 - Borchsenius, Fredrik T1 - Grundlagen und computergerechte Methodik der Mehrkörpersimulation N2 - Dieses Lehrbuch stellt die Methoden der Mehrkörpersimulation anschaulich dar und erläutert an einfachen Beispielen die Vor- und Nachteile bei der praktischen Anwendung. In den Text integrierte Matlab-Skripte und -Funktionen verdeutlichen die einzelnen Methoden. Die Modellbildung, die mathematische Beschreibung und die numerische Simulation von Systemen starrer Körper bilden dabei die Schwerpunkte. Konkrete Beispiele beinhalten einen Bungee-Sprung, die Eigendynamik eines Traktors mit Vorderachsfederung, das Hubschrauberrotorblatt sowie eine Pkw-Vorderachse. Die Lösungen zu den Übungsaufgaben und die im Text integrierten Matlab-Beispiele, die zum Teil durch Animationen angereichert sind, sowie zusätzliche Beispiele und Anwendungen stehen auf der Verlagshomepage beim Buch zum Download zur Verfügung und ermöglichen dadurch auch ein effizientes Selbststudium. Y1 - 2020 SN - 978-3-658-28911-9 U6 - https://doi.org/10.1007/978-3-658-28912-6 PB - Springer Fachmedien CY - Wiesbaden ET - 4. Aufl. ER - TY - CHAP A1 - Rill, Georg A1 - Schaeffer, Thomas A1 - Borchsenius, Fredrik T1 - Analyse von Mehrkörpersystemen T2 - Grundlagen und computergerechte Methodik der Mehrkörpersimulation N2 - Nach dem Aufbau eines Mehrkörper-Simulationsmodells muss dieses auf Richtigkeit, Funktionalität und Wirtschaftlichkeit getestet werden. Die Ermittlung der Gleichgewichtslage stellt dabei eine erste Plausibilitäts-Kontrolle dar. Eine Linearisierung mit anschließender Analyse der Eigendynamik liefert Aussagen über die Frequenzen und das Dämpfungsverhalten des Modells. Einfache Erregersignale ermöglichen einen ersten Einblick in das nichtlineare dynamische Verhalten des Modells. Modell-Parameter, die nicht genau bekannt sind, können durch gezielte Variationen plausibel geschätzt oder über eine Optimierung sogar mit optimalen Werten belegt werden. Nach all diesen Tests steht das Mehrkörper- Simulationsmodell dann für praktischeUntersuchungen zurVerfügung, die neben reinen Zeitsimulationen auch Methoden der Inversen Kinematik und der Inversen Dynamik mit einschließen. KW - Gleichgewicht KW - Linearisierung KW - Eigendynamik KW - Fremderregung KW - Optimierung KW - Inverse Kinematik KW - Inverse Dynamik Y1 - 2023 U6 - https://doi.org/10.1007/978-3-658-41968-4_5 SP - 198 PB - Springer ER -