TY - JOUR A1 - Snarskii, Andrei A. A1 - Shamonin (Chamonine), Mikhail A1 - Yuskevich, Pavel A1 - Savelev, Dmitrii V. A1 - Belyaeva, Inna A. T1 - Induced anisotropy in composite materials with reconfigurable microstructure: Effective medium model with movable percolation threshold JF - Physica A: Statistical Mechanics and its Applications N2 - In composite materials, with field-dependent restructuring of the filler material (changes in the mutual arrangement of inclusions), the presence of an external magnetic field induces anisotropy of the dielectric properties, even if the composite is isotropic in the absence of an external field. A modified effective medium approximation is proposed for the calculation of the components of effective permittivity within a class of composites with reconfigurable microstructure, where both phases (the filler and the matrix) are isotropic and the inclusions have spherical shape. The effective physical properties are calculated in the parallel and perpendicular directions to an applied field. The appearance of the anisotropy of the permittivity is simulated by the introduction of two not-equal, possibly variable (field-dependent) percolation thresholds. The implications, of the proposed theoretical approach, are demonstrated for the case of the dielectric properties of magnetoactive elastomers (MAEs). In MAEs with soft polymer matrices, the mutual arrangement of micrometer-sized magnetic inclusions can significantly change in an applied magnetic field. A reasonable agreement between theory and experiment at a measurement frequency of 1 kHz is found, and is improved in comparison to the previous models. The components of the effective permittivity tensor, characterizing the dielectric properties along the direction of the applied magnetic field and in the orthogonal direction, grow with an increasing field. This growth is more pronounced for the permittivity component in the field direction. The possible extensions of the theoretical model and future directions of research are discussed. The presented theoretical approach can be useful for the application-driven development of a number of smart materials, in particular electro- and magnetorheological gels, elastomers and fluids. KW - Effective medium theory KW - Magnetoactive elastomer KW - Percolation threshold KW - Anisotropy KW - Effective permittivity KW - Random heterogeneous medium Y1 - 2020 U6 - https://doi.org/10.1016/j.physa.2020.125170 VL - 560 IS - December PB - Elsevier ER - TY - JOUR A1 - Savelev, Dmitrii V. A1 - Glavan, Gašper A1 - Burdin, Dmitrii A. A1 - Belyaeva, Inna A. A1 - Fetisov, Leonid Y. A1 - Shamonin (Chamonine), Mikhail A1 - Fetisov, Yuri K. T1 - Enhancement of magnetoelectric effect in polymer composites at low resonance frequencies by operation in the transverse-transverse mode JF - Journal of Magnetism and Magnetic Materials N2 - The resonant direct magnetoelectric (ME) effect for a series of multilayer heterostructures comprising a magnetoactive elastomer (MAE) of different thicknesses and a commercially available piezoelectric polyvinylidene fluoride-based vibration sensor has been investigated in detail. The specimens were rigidly fixed at one end as cantilevers. The cantilevers were operated in the transverse-transverse (T-T) mode, where both magnetic and electric fields were perpendicular to the plane of a non-deformed heterostructure. It is shown that the ME voltage coefficient of considered heterostructures in the T-T mode can be about 20-fold higher than in the conventional longitudinal–transverse (L-T) mode. The highest ME voltage coefficient reached about 150 V/(Oe·cm) at the first bending oscillation mode for the sample with MAE layer thickness of 4 mm. Mechanism of the resonant ME effect in T-T mode is explained using theory of critical bending of MAE cantilevers. Magnetic fields, when the ME voltage reaches its maximum, strongly depended on the MAE layer thickness, and could be associated with the critical field, where the structure commences to strongly bend. The non-monotonous dependence of the resonance frequency of the first oscillation mode on magnetic field strength was observed. The shift of the resonance frequency in the maximum magnetic field reached up to roughly 100 % in comparison with zero field. KW - Direct magnetoelectric effect KW - Magnetoactive elastomer KW - Piezoelectric polymer KW - Flexible composite KW - Low resonance frequency KW - Multilayer heterostructure Y1 - 2024 U6 - https://doi.org/10.1016/j.jmmm.2024.172020 SN - 1873-4766 SN - 0304-8853 VL - 598 PB - Elsevier ER - TY - JOUR A1 - Kovalev, Alexander A1 - Belyaeva, Inna A. A1 - von Hofen, Christian A1 - Gorb, Stanislav A1 - Shamonin (Chamonine), Mikhail T1 - Magnetically Switchable Adhesion and Friction of Soft Magnetoactive Elastomers JF - Advanced Engineering Materials N2 - Herein, the effect of an applied moderate (~240 mT) magnetic field on the work of adhesion (WoA) of mechanically soft (the shear modulus ~10 kPa) magnetoactive elastomer (MAE) samples with two different mass fractions (70 and 80 wt%) of carbonyl iron powder (CIP) is concerned. The unfilled elastomer sample is used for comparison. Due to some sedimentation of filling particles, the concentration of inclusions in thin (~10 μm) subsurface layers is different. It is shown that the WoA increases (up to 1.8-fold) on the particle-enriched side (PES) in the magnetic field and its value is higher for higher filler concentration. On the particle-depleted side (PDS), WoA does not depend on particle concentration and on the magnetic field. Adhesion and friction are coupled in MAEs. No statistically significant difference in the friction coefficient, determined from the extended Amontons´ law, depending on sample side, CIP concentration, or presence of magnetic field is found. However, the PDS in the magnetic field demonstrates significantly higher critical shear stress compared to that for the PES or PDS in the absence of magnetic field. Correlations between different surface properties are discussed. Obtained results are useful for the development of magnetically controllable soft robots. Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-45283 N1 - Corresponding authors: Stanislav Gorb und Mikhail Shamonin VL - 24 IS - 10 SP - 1 EP - 8 PB - WILEY-VCH ER - TY - JOUR A1 - Belyaeva, Inna A. A1 - Kramarenko, Elena Yu A1 - Stepanov, Gennady V. A1 - Sorokin, Vladislav V. A1 - Stadler, Dominik A1 - Shamonin (Chamonine), Mikhail T1 - Transient magnetorheological response of magnetoactive elastomers to step and pyramid excitations JF - SOFT MATTER N2 - Transient rheological response of magnetoactive elastomers is experimentally studied using dynamic torsion at a fixed oscillation frequency in temporally stepwise changing magnetic fields and oscillation amplitudes. For step magnetic-field excitations, at least three exponential functions are required to reasonably describe the time behavior of the storage shear modulus over long time scales (>10(3) s). The deduced characteristic time constants of the corresponding rearrangement processes of the filler network differ approximately by one order of magnitude: tau(1) less than or similar to 10(1) s, tau(2) similar to 10(2) s, and tau(3) similar to 10(3) s. The sudden imposition of the external magnetic field activates a very fast rearrangement process with the characteristic time under 10 s, which cannot be determined more precisely due to the measurement conditions. Even more peculiar transient behavior has been observed during pyramid excitations, when either the external magnetic field was first stepwise increased and then decreased in a staircase manner at a fixed strain amplitude gamma or the strain amplitude gamma was first stepwise increased and then decreased in a staircase manner at a fixed magnetic field. In particular, the so-called "cross-over effect'' has been identified in both dynamical loading programs. This cross-over effect seems to be promoted by the application of the external magnetic field. The experimental results are discussed in the context of the specific rearrangement of the magnetic filler network under the simultaneous action of the external magnetic field and shear deformation. Striking similarities of the observed phenomena to the structural relaxation processes in glassy materials and to the jamming transition of granular materials are pointed out. The obtained results are important for fundamental understanding of material behavior in magnetic fields as well as for the development of devices on the basis of magnetoactive elastomeric materials. KW - AMPLITUDE KW - BEHAVIOR KW - DEPENDENCE KW - FLUID KW - HOMOGENEOUS MAGNETIC-FIELD KW - NORMAL FORCE KW - OSCILLATORY SHEAR KW - TIME KW - VISCOELASTIC PROPERTIES Y1 - 2016 U6 - https://doi.org/10.1039/c5sm02690c VL - 12 IS - 11 SP - 2901 EP - 2913 PB - ROYAL SOC CHEMISTRY ER - TY - JOUR A1 - Belyaeva, Inna A. A1 - Kramarenko, Elena Yu A1 - Shamonin (Chamonine), Mikhail T1 - Magnetodielectric effect in magnetoactive elastomers: Transient response and hysteresis JF - POLYMER N2 - Magnetodielectric properties of magnetoactive elastomers comprising micrometer-sized iron particles dispersed in compliant elastomer matrices are experimentally studied in stepwise time-varying dc magnetic fields. It is found that imposition of magnetic field significantly increases both the effective lossless permittivity of these composite materials as well as their effective conductivity. These magnetodielectric effects are more pronounced for larger concentrations of soft-magnetic filler particles and softer elastomer matrices. The largest observed relative change of the effective dielectric constant in the maximum magnetic field of 0.57 T is of the order of 1000%. The largest observed absolute change of the loss tangent is approximately 0.8. The transient response of the magnetodielectric effect to a step magnetic-field excitation can be rather complex. It changes from a simple monotonic growth with time for small magnetic-field steps (<0.1 T) to a non-monotonic behavior with a significant rapidly appearing overshoot for large magnetic-field steps (>0.3 T). The settling time to the magnetic-field step excitation can reach roughly 1000 s and it depends on the applied magnetic field and sample composition. There is also significant hysteresis of the magnetodielectric effect on the externally applied magnetic field. These findings are attributed to the rearrangement of ferromagnetic filler particles in external magnetic fields. The results will be useful for understanding and predicting the transient behavior of magnetoactive elastomers in applications where the control magnetic field is time dependent. (C) 2017 Elsevier Ltd. All rights reserved. KW - BEHAVIOR KW - composites KW - DIELECTRIC-PROPERTIES KW - hysteresis KW - MAGNETIC-FIELD KW - magnetoactive elastomer KW - magnetodielectric effect KW - Magnetorhelogical elastomer KW - MELT STATE KW - MICROSTRUCTURE KW - POLYMER DEGRADATION KW - PROGRESS KW - Smart material KW - THERMOOXIDATIVE DEGRADATION KW - TIME-RESOLVED RHEOLOGY KW - Transient response Y1 - 2017 U6 - https://doi.org/10.1016/j.polymer.2017.08.056 VL - 127 SP - 119 EP - 128 PB - ELSEVIER ER - TY - JOUR A1 - Sorokin, Vladislav V. A1 - Belyaeva, Inna A. A1 - Shamonin (Chamonine), Mikhail A1 - Kramarenko, Elena Yu T1 - Magnetorheological response of highly filled magnetoactive elastomers from perspective of mechanical energy density: Fractal aggregates above the nanometer scale? JF - Physical Review E N2 - The dynamic shear modulus of magnetoactive elastomers containing 70 and 80 mass % of carbonyl iron microparticles is measured as a function of strain amplitude via dynamic torsion oscillations in various magnetic fields. The results are presented in terms of the mechanical energy density and considered in the framework of the conventional Kraus model. The form exponent of the Kraus model is further related to a physical model of Huber et al. [Huber et al., J. Phys.: Condens. Matter 8, 409 (1996)] that uses a realistic representation for the cluster network possessing fractal structure. Two mechanical loading regimes are identified. At small strain amplitudes the exponent beta of the Kraus model changes in an externally applied magnetic field due to rearrangement of ferromagnetic-filler particles, while at large strain amplitudes, the exponent beta seems to be independent of the magnetic field. The critical mechanical energy characterizing the transition between these two regimes grows with the increasing magnetic field. Similarities between agglomeration and deagglomeration of magnetic filler under simultaneously applied magnetic field and mechanical shear and the concept of jamming transition are discussed. It is proposed that the magnetic field should be considered as an additional parameter to the jamming phase diagram of rubbers filled with magnetic particles. KW - BEHAVIOR KW - composites KW - hysteresis KW - MAGNETIC-FIELD KW - MODEL KW - RHEOLOGY KW - RUBBER KW - SENSITIVE ELASTOMERS KW - VISCOELASTIC PROPERTIES Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevE.95.062501 VL - 95 IS - 6 PB - Amer Physical Soc ER - TY - JOUR A1 - Belyaeva, Inna A. A1 - Klepp, Jürgen A1 - Lemmel, Hartmut A1 - Shamonin (Chamonine), Mikhail T1 - Feasibility of Probing the Filler Restructuring in Magnetoactive Elastomers by Ultra-Small-Angle Neutron Scattering JF - Applied Sciences N2 - Ultra-small-angle neutron scattering (USANS) experiments are reported on isotropic magnetoactive elastomer (MAE) samples with different concentrations of micrometer-sized iron particles in the presence of an in-plane magnetic field up to 350 mT. The effect of the magnetic field on the scattering curves is observed in the scattering vector range between 2.5 x 10(-5) and 1.85 x 10(-4) angstrom(-1). It is found that the neutron scattering depends on the magnetization history (hysteresis). The relation of the observed changes to the magnetic-field-induced restructuring of the filler particles is discussed. The perspectives of employing USANS for investigations of the internal microstructure and its changes in magnetic field are considered. KW - Anisotropy KW - Ferrofluids KW - hysteresis KW - magnetoactive elastomer KW - magnetorheological elastomer KW - Matrix KW - MIicrostructure KW - restructuring of the filler KW - ultra-small-angle neutron scattering Y1 - 2021 U6 - https://doi.org/10.3390/app11104470 VL - 11 IS - 10 SP - 1 EP - 9 PB - MDPI CY - Basel ER - TY - JOUR A1 - Glavan, Gašper A1 - Belyaeva, Inna A. A1 - Shamonin (Chamonine), Mikhail T1 - On the Piezomagnetism of Magnetoactive Elastomeric Cylinders in Uniform Magnetic Fields: Height Modulation in the Vicinity of an Operating Point by Time-Harmonic Fields JF - Polymers N2 - Soft magnetoactive elastomers (MAEs) are currently considered to be promising materials for actuators in soft robotics. Magnetically controlled actuators often operate in the vicinity of a bias point. Their dynamic properties can be characterized by the piezomagnetic strain coefficient, which is a ratio of the time-harmonic strain amplitude to the corresponding magnetic field strength. Herein, the dynamic strain response of a family of MAE cylinders to the time-harmonic (frequency of 0.1-2.5 Hz) magnetic fields of varying amplitude (12.5 kA/m-62.5 kA/m), superimposed on different bias magnetic fields (25-127 kA/m), is systematically investigated for the first time. Strain measurements are based on optical imaging with sub-pixel resolution. It is found that the dynamic strain response of MAEs is considerably different from that in conventional magnetostrictive polymer composites (MPCs), and it cannot be described by the effective piezomagnetic constant from the quasi-static measurements. The obtained maximum values of the piezomagnetic strain coefficient (∼102 nm/A) are one to two orders of magnitude higher than in conventional MPCs, but there is a significant phase lag (35-60°) in the magnetostrictive response with respect to an alternating magnetic field. The experimental dependencies of the characteristics of the alternating strain on the amplitude of the alternating field, bias field, oscillation frequency, and aspect ratio of cylinders are given for several representative examples. It is hypothesized that the main cause of observed peculiarities is the non-linear viscoelasticity of these composite materials. Y1 - 2024 U6 - https://doi.org/10.3390/polym16192706 N1 - Corresponding author der OTH Regensburg: Gašper Glavan VL - 16 IS - 19 ER - TY - JOUR A1 - Glavan, Gašper A1 - Salamon, Peter A1 - Belyaeva, Inna A. A1 - Shamonin (Chamonine), Mikhail A1 - Drevenšek‐Olenik, Irena T1 - Tunable surface roughness and wettability of a soft magnetoactive elastomer JF - Journal of applied polymer science N2 - Surface topographical modifications of a soft magnetoactive elastomer (MAE) in response to variable applied magnetic field are investigated. The analysis is performed in situ and is based on optical microscopy, spread optical reflection and optical profilometry measurements. Optical profilometry analysis shows that the responsivity of magnetic field-induced surface roughness with respect to external magnetic field is in the range of 1 mu m/T. A significant hysteresis of surface modifications takes place for increasing and decreasing fields. Investigations of shape of sessile water droplets deposited on the MAE surface reveal that field-induced topographical modifications affect the contact angle of water at the surface. This effect is reversible and the responsivity to magnetic field is in the range of 20 degrees/T. Despite the increased surface roughness, the apparent contact angle decreases with increasing field, which is attributed to the field-induced protrusion of hydrophilic microparticles from the surface layer. KW - CONTACT KW - EVAPORATION KW - FORCE KW - hydrophobic polymers KW - MAGNETIC-MATERIALS KW - magnetism and magnetic properties KW - optical properties KW - STIMULI-RESPONSIVE SURFACES KW - stimuli-sensitive polymers KW - structure-property relationships Y1 - 2018 U6 - https://doi.org/10.1002/app.46221 VL - 135 IS - 18 PB - Wiley ER - TY - JOUR A1 - Kravanja, Gaia A1 - Belyaeva, Inna A. A1 - Hribar, Luka A1 - Drevenšek‐Olenik, Irena A1 - Shamonin (Chamonine), Mikhail A1 - Jezeršek, Matija T1 - Laser Micromachining of Magnetoactive Elastomers as Enabling Technology for Magnetoresponsive Surfaces JF - Advanced Materials Technologies N2 - A simple method for structuring of the surface of a magnetoactive elastomer (MAE) on the tens of micrometers scale, which capabilities extend beyond conventional mold-based polymer casting, is reported. The method relies on the ablation of the material by absorption of nanosecond infrared pulses from a commercial laser. It is shown that it is possible to fabricate parallel lamellar structures with a high aspect ratio (up to 6:1) as well as structures with complex scanning trajectories. The method is fast (fabrication time for the 7 × 7 mm2 is about 60 s), and the results are highly reproducible. To illustrate the capabilities of the fabrication method, both orthogonal to the MAE surface and tilted lamellar structures are fabricated. These magnetosensitive lamellae can be easily bent by ±45° using an external magnetic field of about 230 mT. It is demonstrated that this bending allows one to control the sliding angle of water droplets in a great range between a sticky (>90°) and a sliding state (<20°). Perspectives on employing this fabrication technology for magnetosensitive smart surfaces in microfluidic devices and soft robotics are discussed. Y1 - 2021 U6 - https://doi.org/10.1002/admt.202101045 VL - 7 IS - 5 SP - 1 EP - 8 PB - Wiley ER -