TY - JOUR A1 - Schaeffer, Leon A1 - Herrmann, David A1 - Schratzenstaller, Thomas A1 - Dendorfer, Sebastian A1 - Böhm, Valter T1 - Theoretical considerations on stiffness characteristics of a 3-dimensional tensegrity joint model for the use in dynamic hand orthoses JF - Journal of Medical Robotics Research Y1 - 2025 U6 - https://doi.org/10.1142/S2424905X25400069 PB - World Scientific ER - TY - CHAP A1 - Herrmann, David A1 - Kunze, Julian A1 - Kobes, Julian A1 - Seelecke, Stefan A1 - Motzki, Paul A1 - Rizzello, Gianluca A1 - Böhm, Valter T1 - A mobile tensegrity robot driven by rolled dielectric elastomer actuators T2 - 2025 IEEE 8th International Conference on Soft Robotics (RoboSoft), 22-26.April 2025, Lausanne N2 - This paper presents a tensegrity-based mobile robot powered by dielectric elastomer actuators (DEAs), which provide high compliance and adaptability. The design consists of two V-shaped members linked by DEAs, enabling both symmetrical and asymmetrical actuation for varied movement patterns. Modal analysis and simulations show that uniform DEA actuation supports efficient linear motion, while asymmetrical actuation enables controlled circular paths. Experimental testing highlights the influence of voltage waveforms, frequencies, and surface types on speed, with optimal performance achieved using rectangular waveforms on low-friction surfaces. The robot reaches a top speed of 188 mm/s, among the highest reported for DEA-driven robots. KW - Vibrations KW - Surface waves KW - Modal analysis KW - Resonant frequency KW - Soft robotics KW - Mobile robots KW - Rubber KW - Transient analysis KW - Dielectric elastomer actuators KW - Testing Y1 - 2025 U6 - https://doi.org/10.1109/RoboSoft63089.2025.11020974 PB - IEEE ER - TY - CHAP A1 - Schaeffer, Leon A1 - Schmaußer, Theresa A1 - Herrmann, David A1 - Lehmann, Lukas A1 - Dendorfer, Sebastian A1 - Böhm, Valter T1 - Multi-Body Simulation of a Dynamic Hand Orthosis based on a Prestressed Compliant Structure Incorporating the Human Hand T2 - 2025 International Symposium on Medical Robotics (ISMR), May 14-16, 2025, Atlanta, GA, USA, N2 - Many dynamic hand orthoses use one degree of freedom joints, such as hinge joints. Therefore, these orthoses can only partially replicate the complex, multi-axis movement of the hand. A possible solution for this is the use of prestressed compliant structures as the basis for orthoses. Determining the joint forces in the wrist and optimizing the dynamic orthosis to influence these forces as well as acting muscle forces are important steps in the development of these orthoses. For this reason, in this work multi-body simulation models of an orthosis with human hand models are presented. Based on these theoretical investigations, more detailed orthosis models as well as initial prototypes of prestressed compliant dynamic hand orthoses can be developed. KW - Hands KW - Wrist KW - Systematics KW - Simulation KW - Dynamics KW - Refining KW - Prototypes KW - Usability KW - Research and development KW - Testing Y1 - 2025 U6 - https://doi.org/10.1109/ISMR67322.2025.11025982 SP - 80 EP - 86 PB - IEEE ER -