TY - JOUR A1 - Wiesent, Lisa A1 - Schultheiß, Ulrich A1 - Lulla, Philipp A1 - Noster, Ulf A1 - Schratzenstaller, Thomas A1 - Schmid, Christof A1 - Nonn, Aida A1 - Spear, Ashley T1 - Computational analysis of the effects of geometric irregularities and post-processing steps on the mechanical behavior of additively manufactured 316L stainless steel stents JF - PLoS ONE N2 - Advances in additive manufacturing enable the production of tailored lattice structures and thus, in principle, coronary stents. This study investigates the effects of process-related irregularities, heat and surface treatment on the morphology, mechanical response, and expansion behavior of 316L stainless steel stents produced by laser powder bed fusion and provides a methodological approach for their numerical evaluation. A combined experimental and computational framework is used, based on both actual and computationally reconstructed laser powder bed fused stents. Process-related morphological deviations between the as-designed and actual laser powder bed fused stents were observed, resulting in a diameter increase by a factor of 2-2.6 for the stents without surface treatment and 1.3-2 for the electropolished stent compared to the as-designed stent. Thus, due to the increased geometrically induced stiffness, the laser powder bed fused stents in the as-built (7.11 ± 0.63 N) or the heat treated condition (5.87 ± 0.49 N) showed increased radial forces when compressed between two plates. After electropolishing, the heat treated stents exhibited radial forces (2.38 ± 0.23 N) comparable to conventional metallic stents. The laser powder bed fused stents were further affected by the size effect, resulting in a reduced yield strength by 41% in the as-built and by 59% in the heat treated condition compared to the bulk material obtained from tensile tests. The presented numerical approach was successful in predicting the macroscopic mechanical response of the stents under compression. During deformation, increased stiffness and local stress concentration were observed within the laser powder bed fused stents. Subsequent numerical expansion analysis of the derived stent models within a previously verified numerical model of stent expansion showed that electropolished and heat treated laser powder bed fused stents can exhibit comparable expansion behavior to conventional stents. The findings from this work motivate future experimental/numerical studies to quantify threshold values of critical geometric irregularities, which could be used to establish design guidelines for laser powder bed fused stents/lattice structures. KW - Heat treatment KW - Lasers KW - Surface treatments KW - Specimen preparation and treatment KW - Material properties KW - Stiffness KW - Deformation KW - Powders KW - Koronarendoprothese KW - Rapid prototyping KW - Numerische Methode Y1 - 2020 U6 - https://doi.org/10.1371/journal.pone.0244463 N1 - Corresponding author: Lisa Wiesent VL - 15 IS - 12 SP - 1 EP - 30 PB - PLOS ER - TY - JOUR A1 - Wiesent, Lisa A1 - Spear, Ashley A1 - Nonn, Aida T1 - Computational analysis of the effects of geometric irregularities on the interaction of an additively manufactured 316L stainless steel stent and a coronary artery JF - Journal of the Mechanical Behavior of Biomedical Materials N2 - Customized additively manufactured (laser powder bed fused (L-PBF)) stents could improve the treatment of complex lesions by enhancing stent-artery conformity. However, geometric irregularities inherent for L-PBF stents are expected to influence not only their mechanical behavior but also their interaction with the artery. In this study, the influence of geometrical irregularities on stent-artery interaction is evaluated within a numerical framework. Thus, computed arterial stresses induced by a reconstructed L-PBF stent model are compared to those induced by the intended stent model (also representing a stent geometry obtained from conventional manufacturing processes) and a modified CAD stent model that accounts for the increased strut thickness inherent for L-PBF stents. It was found that, similar to conventionally manufactured stents, arterial stresses are initially related to the basic stent design/topology, with the highest stresses occurring at the indentations of the stent struts. Compared to the stent CAD model, the L-PBF stent induces distinctly higher and more maximum volume stresses within the plaque and the arterial wall. In return, the modified CAD model overestimates the arterial stresses induced by the L-PBF stent due to its homogeneously increased strut thickness and thus its homogeneously increased geometric stiffness compared with the L-PBF stent. Therefore, the L-PBF-induced geometric irregularities must be explicitly considered when evaluating the L-PBF stent-induced stresses because the intended stent CAD model underestimates the arterial stresses, whereas the modified CAD model overestimates them. The arterial stresses induced by the L-PBF stent were still within the range of values reported for conventional stents in literature, suggesting that the use of L-PBF stents is conceivable in principle. However, because geometric irregularities, such as protruding features from the stent surface, could potentially damage the artery or lead to premature stent failure, further improvement of L-PBF stents is essential. KW - Laser powder bed fusion (L-PBF) KW - Cardiovascular stents KW - Finite element analysis (FEA) KW - Geometrical imperfections KW - Stent-artery interaction Y1 - 2022 U6 - https://doi.org/10.1016/j.jmbbm.2021.104878 SN - 1751-6161 VL - 125 PB - Elsevier ER -