TY - CHAP A1 - Reindl, Andrea A1 - Meier, Hans A1 - Niemetz, Michael T1 - Software Framework for the Simulation of a Decentralized Battery Management System Consisting of Intelligent Battery Cells T2 - 2019 IEEE Student Conference on Research and Development (SCOReD), 15-17 Oct. 2019, Bandar Seri Iskandar, Malaysia N2 - Conventional battery management systems typically adopt hierarchical master-slave architectures. With regard to an uninterruptible power supply, the most significant disadvantage of central structures is the dependency of the errorfree function of the superior master board. The decentralized battery management system presented in this paper, consisting of consumers, generators and intelligent battery cells, is controlled without any central coordination authority. For this purpose, an intelligent control algorithm and a leader election algorithm are implemented on the microcontrollers of the battery cells. To test different control and election strategies, a software framework is presented for the complete simulation of the decentralized battery management system consisting of equal participants. KW - autonomous systems KW - Battery management system KW - decentralized control KW - distributed management KW - fault tolerant control KW - power system security KW - Renewable energy sources KW - uninterruptible power systems Y1 - 2019 U6 - https://doi.org/10.1109/SCORED.2019.8896284 SP - 75 EP - 80 ER - TY - CHAP A1 - Jupke, Michael A1 - Reindl, Andrea A1 - Meier, Hans A1 - Niemetz, Michael ED - Pinker, Jiří T1 - Bidirectional DC-DC Converter with Digital Droop Parameterization T2 - 26th 2021 International Conference on Applied Electronics (AE): 7-8 Sept. 2021 Pilsen, Czech Republic N2 - The key for decentralized battery systems is a robust and communication-less control strategy for autonomous power sharing of parallel-connected DC-DC converters. Battery systems improve the reliability and quality of power supply in renewable energy systems and enable power supply for off-grid, mobile applications, including islanded grids, home storage, and electric vehicles. In many cases, components with different electrical properties require different voltage levels. An adaptation is consequently essential and is normally implemented in DC grids for the batteries via bidirectional DC-DC converters. The power flow in both directions can thus be ensured. To achieve a power distribution in parallel connected DC-DC converters, a droop control in the form of a virtual internal resistor can be used. This paper presents a novel approach of a DC-DC converter with a digitally parameterizable droop resistor, whose voltage regulation is based on an analog operational amplifier circuit to ensure low delays and robustness. The droop resistor is adjusted with a microcontroller, which offers the possibility to apply a higher-level control for load sharing via an interface. Mathematical correlations are used to clearly define the parameters of the control. Furthermore, the circuit was completely simulated and tested in the hardware setup. The shown results verify the functionality and indicate only minor deviations. Therefore, this circuit is important for future use in distributed battery systems. KW - battery storage plants KW - DC-DC power convertors KW - power convertors KW - distributed power generation KW - microcontrollers KW - voltage regulators KW - voltage control KW - power generation control KW - power grids Y1 - 2021 SN - 978-80-261-0972-3 U6 - https://doi.org/10.23919/AE51540.2021.9542920 SP - 1 EP - 6 PB - Institute of Electrical and Electronics Engineers ER - TY - CHAP A1 - Herbold, Florian A1 - Reindl, Andrea A1 - Meier, Hans A1 - Niemetz, Michael A1 - Krämer, Stefan ED - Kubátová, Hana ED - Fišer, Petr ED - Borecký, Jaroslav T1 - Secure Software Updates: Challenges and Solutions for Embedded IoT Systems T2 - Proceedings of the 9th Embedded Systems Workshop: July 1-3, 2021 Horomerice, Czech Republic N2 - The invention of the internet made the development of intelligent networking of millions of embedded systems possible. This enabled smart buildings, power grids and cities as well as applications in the fields of health, agriculture and industry. These systems frequently perform safety-critical applications and operations. This makes it urgent to protect these sensible systems as effectively as possible. Especially firmware updates are often the weak point in the systems. If unauthorised persons gain access to the system during the update, malware can be injected or sensitive data can be read and stolen. This paper describes the challenges of secure firmware updates. To protect an embedded system from potential attackers, the concepts integrity, authenticity and confidentiality have to be adhered during the update process. Otherwise, there is an increased risk of modifying or reverse engineering the firmware image. Likewise, inadequately protected software can enable the installation of third-party firmware as well as the installation of firmware on a third-party system. Threat prevention is presented with solutions derived from functional safety and IT security. Aspects of protection against errors in the transmission of updates and against attacks aiming to compromise the system are explained. Finally, a possible sequence of a secure update process is examined in detail for a real embedded system implementation. For this purpose, the preparation, transmission and installation of a firmware update in the bootloader are discussed KW - Bootloader KW - Cryptograph KW - Embedded systems KW - Firmware Update KW - IoT KW - Safety, Security KW - Software Protection Y1 - 2021 UR - https://www.researchgate.net/publication/354995594_Secure_Software_Updates_Challenges_and_Solutions_for_Embedded_IoT_Systems SN - 978-80-01-06858-8 SP - 5 EP - 13 ER - TY - CHAP A1 - Reindl, Andrea A1 - Singer, Thomas A1 - Meier, Hans A1 - Niemetz, Michael A1 - Park, Sangyoung T1 - Framework to Test DC-DC Converters Developed for a Decentralized Battery Management System T2 - 2021 International Conference on Applied Electronics (AE): 7-8 Sept. 2021, Pilsen, Czech Republic N2 - DC- DC converters control the power flow and thus the power distribution between the components on different voltage levels. They are essential for (dis)charging batteries and influence the safety and stability of the entire battery management system (BMS). Therefore, testing the functionality and the reliability of DC-DC converters is crucial. This is especially true for decentralized battery management systems (DBMS), where multiple nodes communicate to collectively control the system. The used DC-DC converters are modified to parameterize them during operation via microcontroller interfaces. Integrating the communication into the control loop requires an analysis of the control behavior due to additional delays. Therefore, this paper proposes a framework to test DC-DC converters considering the control and communication perspectives. The response time, the control accuracy and stability of these DC-DC converters, e.g., under continuous and abrupt load changes, are measured in automated tests. The dedicated software framework simulates the DBMS and stimulates the hardware components (e.g. electronic loads, data acquisition) via respective interfaces (CAN, RS232). This allows the test of various DC-DC converters with flexibly adaptable load and power generation profiles. An initial application validates the test framework by verifying the aforementioned aspects and thus the applicability of a DC-DC converter within the DBMS. KW - Batteries KW - Battery management system KW - Battery management systems KW - Control systems KW - DC-DC converter KW - DC-DC power converters KW - decentralized control KW - hardware in the loop testing KW - object oriented programming KW - Power system stability KW - Python KW - Stability analysis KW - system testing KW - Time measurement Y1 - 2021 U6 - https://doi.org/10.23919/AE51540.2021.9542882 SP - 1 EP - 6 PB - IEEE ER - TY - CHAP A1 - Reindl, Andrea A1 - Meier, Hans A1 - Niemetz, Michael A1 - Park, Sangyoung T1 - Decentralized Battery Management System with Customized Hardware Components T2 - IEEE 19th Student Conference on Research and Development (SCOReD), Sustainable Engineering and Technology towards Industry Revolution: 23-25 Nov. 2021, Kota Kinabalu, Malaysia N2 - With an increasing number of sold electric vehicles (EVs), a large number of used batteries will be at disposal. How to deal with these resources is one of the major challenges in reducing the environmental impact of batteries throughout their entire life cycle. Heterogeneous cell parameters due to the different usage histories are a challenge for second-life use. The effort and cost of remanufacturing required to test and assemble a new battery pack is a further concern. Systems that combine battery packs/modules without full reassembly offer advantages such as cost and reusability. A decentralized battery management system (DBMS) provides a suitable architecture for such systems involving different types of batteries. In this paper, an architecture for a decentralized, battery state-dependent control is shown. The proposed DBMS supports various types of batteries, is scalable and flexibly adaptable for a wide range of applications. Despite the significant advantages, there are increased requirements to meet for the hardware implementation and the applied control strategies. Therefore, the necessary hardware components and their requirements are described and the hardware implementations are provided. KW - battery fitness KW - Battery management system KW - Battery management systems KW - bidirectional power flow KW - Computer architecture KW - Costs KW - DC-DC power converters KW - decentralized control KW - Electric vehicles KW - Hardware KW - load sharing KW - Microprocessors KW - Renewable energy sources KW - second life battery Y1 - 2021 U6 - https://doi.org/10.1109/SCOReD53546.2021.9652737 SP - 350 EP - 355 PB - IEEE ER - TY - CHAP A1 - Reindl, Andrea A1 - Meier, Hans A1 - Niemetz, Michael ED - Brinkmann, André ED - Karl, Wolfgang ED - Lankes, Stefan ED - Tomforde, Sven ED - Pionteck, Thilo ED - Trinitis, Carsten T1 - Scalable, Decentralized Battery Management System Based on Self-organizing Nodes T2 - Architecture of computing systems - ARCS 2020: 33rd international conference, Aachen, Germany, May 25-28, 2020, proceedings N2 - Due to the transition to renewable energy sources and the increasing share of electric vehicles and smart grids, batteries are gaining in importance. Battery management systems (BMSs) are required for optimal, reliable operation. In this paper, existing BMS topologies are presented and evaluated in terms of reliability, scalability and flexibility. The decentralisation of BMSs and associated advantages are shown. A scalable, reconfigurable BMS based on a distributed architecture of self-organized, locally controlled nodes is proposed. For distributed system control, producers, batteries and consumers each are equipped with a local microcontroller based control unit, which monitors and controls the local parameters with its own computing and communication resources. Features, advantages and challenges to overcome of the proposed approach are described. KW - Availability Decentralized control KW - Battery management systems KW - Controller Area Network KW - distributed management KW - fault tolerant control KW - Multi-microcomputer system KW - Reconfigurable architectures KW - Renewable energy sources KW - Scalability KW - Topology Y1 - 2020 SN - 978-3-030-52793-8 U6 - https://doi.org/10.1007/978-3-030-52794-5_13 VL - 12155 SP - 171 EP - 184 PB - Springer International Publishing CY - Cham ER - TY - CHAP A1 - Reindl, Andrea A1 - Langer, T. A1 - Meier, Hans A1 - Niemetz, Michael T1 - Comparative Reliability Analysis for Single and Dual CAN (FD) Systems T2 - 27th 2022 International Conference on Applied Electronics (AE): 6-7 September 2022, Pilsen, Czech Republic N2 - Modern cyber-physical systems, such as autonomous vehicles, advanced driver assistance systems, automation systems and battery management systems, result in extended communication requirements regarding the reliability and the availability. The Controller Area Network (CAN) is a broadcast-based protocol which is still used as a standard for serial communication between individual microcontrollers due to its reliability and low power consumption. In addition, it provides mechanisms for detecting transmission errors and retransmitting messages in the event of an error. The enhancement CAN Flexible Data-Rate (CAN FD) offers increased data rates and transmission rates in order to meet the data throughput requirements. In this paper, the mechanisms for reliable data transmission in a CAN FD network are analyzed. To improve reliability, a second identical CAN-FD network is added to the system, using the additional CAN interface already available on common microcontrollers. The redundant communication network is examined in terms of failure rates and the mean time to failure. The reliability over the operation time is calculated for the single and the redundant version of the CAN FD network using the failure rate limits of the ASIL levels. Y1 - 2022 SN - 9781665494816 U6 - https://doi.org/10.1109/AE54730.2022.9920078 SP - 1 EP - 6 PB - IEEE ER - TY - GEN A1 - Reindl, Andrea A1 - Eriksson, Lars A1 - Niemetz, Michael A1 - Sangyoung, Park A1 - Meier, Hans T1 - Control Concepts for a Decentralized Battery Management System Decentralized Battery Management System Global Control Level T2 - 16th International Renewable Energy Storage Conference (IRES2022), 20 to 22 September 2022, Düsseldorf Y1 - 2022 UR - https://www.researchgate.net/publication/363769042_Control_Concepts_for_a_Decentralized_Battery_Management_System_Decentralized_Battery_Management_System_Global_Control_Level PB - Eurosolar ER - TY - CHAP A1 - Wetzel, Daniel A1 - Reindl, Andrea A1 - Meier, Hans A1 - Niemetz, Michael A1 - Farmbauer, Michael T1 - A Customized Python Interface for Windows OS for a Low Budget USB-to-CAN-Adapter T2 - International Conference on Electrical, Computer and Energy Technologies (ICECET 2022): 20-22 July 2022, Prague, Czech Republic N2 - Over the last three decades, the Controller Area Network (CAN) has become the dominant communication in embedded systems. Especially for automotive systems it offers advantages including high robustness, low error rate and high reliability combined with low power consumption. Therefore, learning the basics of this bus system is substantial in this field. Nowadays, various media about the functionality and use of CAN exist which make it easy to read into the topic. But often, theory alone is not sufficient. To deepen the understanding, practical implementation contributes significantly. However, affordable and easy-to-use CAN devices for training purposes are scarce. Existing equipment can be divided into expensive professional devices, which have many functions and inexpensive ones for hobbyists, which require difficult configurations. Therefore, a practical solution is a low-budget device equipped with an overlay which deals with the time consuming configurations. This paper covers the development of a python interface for a purchasable cost effective CAN device for Windows OS. The intention is to create an easy-to-use program that enables beginners to get in touch with CAN and collect practical experience. At the start, a brief explanation of the CAN functionality is given. After that, we introduce the hardware used in this project. Next, the software part covers the development of the interface and the integration of this interface into python-can. Furthermore, a virtual playground is introduced for testing purposes. Also, to demonstrate the functionality of the interface, a test program is executed in conjunction with a logic analyzer. KW - Controller area network KW - User Interface KW - USB to CAN KW - Windows KW - python-CAN Y1 - 2022 SN - 978-1-66547-087-2 U6 - https://doi.org/10.1109/ICECET55527.2022.9872574 PB - IEEE CY - Piscataway, NJ, USA ER - TY - CHAP A1 - Körner, Patrick A1 - Reindl, Andrea A1 - Meier, Hans A1 - Niemetz, Michael T1 - A Theoretical Comparison of Different Virtual Synchronous Generator Implementations on Inverters T2 - 2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe): 05-09 September 2022, Hannover, Germany N2 - The goal to overcome the global climate crisis leads to a rising demand for the usage of Renewable Energy Sources (RES). Decentralized control strategies are needed to allow the integration of RES into the grid. The Virtual Synchronous Generator (VSG) is proposed as a method to add virtual inertia to the grid by emulating the rotating mass of a Synchronous Generator (SG) on the control algorithm of an inverter. This paper presents the VSG control structure as well as the mathematical description in a unified form. Due to the fact that classical droop control can be seen as a special form of the VSG, their correlation is highlighted by evaluating the steady state output characteristics of the inverter. Furthermore, a theoretical comparison between different VSG topologies, including the VISMA-Method 2 and the synchronverter, is given. In order to achieve better voltage stability, principles to add virtual impedance to the inverter's output are described. Y1 - 2022 UR - https://ieeexplore.ieee.org/document/9907497 PB - IEEE ER - TY - CHAP A1 - Meier, Hans A1 - Reindl, Andrea A1 - Wetzel, Daniel A1 - Niemetz, Michael T1 - Comparative Analysis of CAN, CAN FD and Ethernet for Networked Control Systems T2 - Embedded World 2021 Exhibition & Conference: 1.-5.3.2021, digital, conference proceedings N2 - Networked control systems as e.g., battery management systems, smart grids or vehicular systems, consist of sensors, actuators and controllers with a communication network in the control loop. The data rate and the reliability of the underlying communication network are key factors since delays or message losses directly affect the system control. In addition, the processor load caused by the communication is significant as it influences the calculation of system states and the setting of control parameters. The power consumption of the communication network has a further impact on the energy efficiency of the respective application. In this paper, the communication technologies Controller Area Network (CAN), Controller Area Network Flexible Data-rate (CAN FD) and Ethernet are compared in the context of networked control systems with focus on a decentralized battery management system. First, the message processing time and the processor load are measured. With regard to energy efficiency, the maximum power consumption is determined. The Bit Error Rates (BER) and the Residual Error Rates (RER) are calculated to evaluate the reliability. Finally, the receive FIFO load under high traffic conditions is examined. Index Terms—Networked control systems, decentralized battery management system, microcontrollers, communication systems, Ethernet, Controller Area Network (CAN), Controller Area Network Flexible Data-rate (CAN FD) energy efficiency, energy consumption, bit error rate, residual error rate, processor load. Y1 - 2021 UR - https://www.researchgate.net/publication/354995738_Comparative_Analysis_of_CAN_CAN_FD_and_Ethernet_for_Networked_Control_Systems/link/615706baa6fae644fbb85b95/download PB - WEKA Fachmedien ER - TY - CHAP A1 - Reindl, Andrea A1 - Wetzel, Daniel A1 - Niemetz, Michael A1 - Meier, Hans T1 - Leader Election in a Distributed CAN-Based Multi-Microcontroller System T2 - 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), 19-21 July 2023, Tenerife, Canary Islands, Spain N2 - In a distributed system, functionally equivalent nodes work together to form a system with improved availability, reliability and fault tolerance. Thereby, the purpose is to achieve a common control objective. As multiple components cooperate to accomplish tasks, coordination between them is required. Electing a node as the temporary leader can be a possible solution to perform coordination. This work presents a self-stabilizing algorithm for the election of a leader in dynamically reconfigurable bus topology-based broadcast systems with a message and time complexity of O(1). The election is performed dynamically, i.e., not only when the leader node fails, and is criterion-based. The criterion used is a performance related value which evaluates the properties of the node regarding the ability to perform the tasks of the leader. The increased demands on the leader are taken into account and a re-election is started when the criterion value drops below a predefined level. The goal here is to distribute the load more evenly and to reduce the probability of failure due to overload of individual nodes. For improved system availability and reduced fault rates, a management level consisting of leader, assistant and co-assistant is introduced. This reduces the number of required messages and the duration in case of non-initial election. For further reduction of required messages to uniquely determine a leader, the CAN protocol is exploited. The proposed algorithm selects a node with an improved failure rate and a reduced message and hence time complexity while satisfying the safety and termination constraints. The operation of the algorithm is validated using a hardware test setup. KW - broadcast communication KW - computational complexity KW - controller area networks KW - coordination KW - decentralized applications KW - distributed systems KW - failure analysis KW - Fault tolerance KW - fault tolerant computing KW - Fault tolerant systems KW - Hardware KW - Heuristic algorithms KW - Leader election KW - load balancing KW - Mechatronics KW - message complexity KW - microcontrollers KW - performance related election KW - probability KW - Protocols KW - self-stabilization KW - telecommunication network topology KW - Voting Y1 - 2023 SN - 979-8-3503-2297-2 U6 - https://doi.org/10.1109/ICECCME57830.2023.10252250 SP - 1 EP - 8 PB - IEEE CY - Piscataway, NJ, USA ER - TY - CHAP A1 - Reindl, Andrea A1 - Lausser, Florian A1 - Eriksson, Lars A1 - Park, Sangyoung A1 - Niemetz, Michael A1 - Meier, Hans ED - Pinker, Jiří T1 - Control Oriented Mathematical Modeling of a Bidirectional DC-DC Converter - Part 1: Buck Mode T2 - 28th International Conference on Applied Electronics (AE) 2023, Pilsen, 6-7 September 2023 N2 - Parallel connection of different batteries equipped with bidirectional DC-DC converters offers an increase of the total storage capacity, the provision of higher currents and an improvement of reliability and system availability. To share the load current among the DC-DC converters while maintaining the safe operating range of the batteries, appropriate controllers are needed. The basis for the design of these control approaches requires knowledge of both the static and dynamic characteristics of the DC-DC converter used. In this paper, the small signal analysis of a DC-DC converter in buck mode is shown using the circuit averaging technique. The paper gives an overview of all required transfer functions:. The control and line to output transfer functions for CCM and DCM relevant for average current mode control as well as for voltage control are derived and their poles and zeros are determined. This provides the basis for stability consideration, analysis of the overall control structure and controller design. KW - Analytical models KW - Average modeling KW - Batteries KW - bidirectional dc-dc converter KW - buck mode KW - circuit-averaging technique KW - continuous conduction mode KW - DC-DC power converters KW - derivation of transfer functions KW - discontinuous conduction mode KW - half-bridge KW - Mathematical models KW - Reliability KW - Signal analysis KW - small signal analysis KW - Stability analysis Y1 - 2023 SN - 979-8-3503-3554-5 U6 - https://doi.org/10.1109/AE58099.2023.10274168 SP - 1 EP - 7 PB - University of West Bohemia CY - Pilsen ER -