TY - RPRT A1 - Steiger, Tamara A1 - Foltan, Maik A1 - Philipp, Alois A1 - Müller, Thomas A1 - Gruber, Michael Andreas A1 - Bredthauer, Andre A1 - Krenkel, Lars A1 - Birkenmaier, Clemens A1 - Lehle, Karla T1 - Accumulations of von Willebrand factor within ECMO oxygenators: Potential indicator of coagulation abnormalities in critically ill patients? N2 - Clot formation within membrane oxygenators (MOs) remains a critical problem during extracorporeal membrane oxygenation (ECMO). The composition of the clots—in particular, the presence of von Willebrand factor (vWF)—may be an indicator for prevalent nonphysiological flow conditions, foreign body reactions, or coagulation abnormalities in critically ill patients. Mats of interwoven gas exchange fibers from randomly collected MOs (PLS, Maquet, Rastatt, Germany) of 21 patients were stained with antibodies (anti‐vWF and anti‐P‐selectin) and counterstained with 4′,6‐diamidino‐2‐phenylindole. The extent of vWF‐loading was correlated with patient and technical data. While 12 MOs showed low vWF‐loadings, 9 MOs showed high vWF‐loading with highest accumulations close to crossing points of adjacent gas fibers. The presence and the extent of vWF‐fibers/“cobwebs,” leukocytes, platelet–leukocyte aggregates (PLAs), and P‐selectin‐positive platelet aggregates were independent of the extent of vWF‐loading. However, the highly loaded MOs were obtained from patients with a significantly elevated SOFA score, severe thrombocytopenia, and persistent liver dysfunction. The coagulation abnormalities of these critically ill patients may cause an accumulation of the highly thrombogenic and elongated high‐molecular‐weight vWF multimers in the plasma which will be trapped in the MOs during the ECMO therapy. Y1 - 2019 ER - TY - CHAP A1 - Cantalloube, Faustine A1 - Gomez-Gonzalez, Carlos A1 - Absil, Olivier A1 - Cantero, Carles A1 - Bacher, Regis A1 - Bonse, Markus A1 - Bottom, Michael A1 - Dahlqvist, Carl-Henrik A1 - Desgrange, Célia A1 - Flasseur, Olivier A1 - Fuhrmann, Thomas A1 - Henning, Thomas H. A1 - Jensen-Clem, Rebecca A1 - Kenworthy, Matthew A1 - Mawet, Dimitri A1 - Mesa, Dino A1 - Meshkat, Tiffany A1 - Mouillet, David A1 - Müller, André A1 - Nasedkin, Evert A1 - Pairet, Benoit A1 - Piérard, Sébastien A1 - Ruffio, Jean-Baptiste A1 - Samland, Matthias A1 - Stone, Jordan A1 - van Droogenbroeck, Marc ED - Schmidt, Dirk ED - Schreiber, Laura ED - Vernet, Elise T1 - Exoplanet imaging data challenge: benchmarking the various image processing methods for exoplanet detection T2 - Adaptive Optics Systems VII : 14-22 December 2020, online only, United States N2 - The Exoplanet Imaging Data Challenge is a community-wide effort meant to offer a platform for a fair and common comparison of image processing methods designed for exoplanet direct detection. For this purpose, it gathers on a dedicated repository (Zenodo), data from several high-contrast ground-based instruments worldwide in which we injected synthetic planetary signals. The data challenge is hosted on the CodaLab competition platform, where participants can upload their results. The specifications of the data challenge are published on our website https://exoplanet-imaging-challenge.github.io/. The first phase, launched on the 1st of September 2019 and closed on the 1st of October 2020, consisted in detecting point sources in two types of common data-set in the field of high-contrast imaging: data taken in pupil-tracking mode at one wavelength (subchallenge 1, also referred to as ADI) and multispectral data taken in pupil-tracking mode (subchallenge 2, also referred to as ADI+mSDI). In this paper, we describe the approach, organisational lessons-learnt and current limitations of the data challenge, as well as preliminary results of the participants’ submissions for this first phase. In the future, we plan to provide permanent access to the standard library of data sets and metrics, in order to guide the validation and support the publications of innovative image processing algorithms dedicated to high-contrast imaging of planetary systems. Y1 - 2020 SN - 9781510636835 U6 - https://doi.org/10.1117/12.2574803 PB - SPIE ER -