TY - JOUR A1 - Kolev, Kalin A1 - Kirchgeßner, Norbert A1 - Houben, Sebastian A1 - Csiszár, Agnes A1 - Rubner, Wolfgang A1 - Palm, Christoph A1 - Eiben, Björn A1 - Merkel, Rudolf A1 - Cremers, Daniel T1 - A variational approach to vesicle membrane reconstruction from fluorescence imaging JF - Pattern Recognition N2 - Biological applications like vesicle membrane analysis involve the precise segmentation of 3D structures in noisy volumetric data, obtained by techniques like magnetic resonance imaging (MRI) or laser scanning microscopy (LSM). Dealing with such data is a challenging task and requires robust and accurate segmentation methods. In this article, we propose a novel energy model for 3D segmentation fusing various cues like regional intensity subdivision, edge alignment and orientation information. The uniqueness of the approach consists in the definition of a new anisotropic regularizer, which accounts for the unbalanced slicing of the measured volume data, and the generalization of an efficient numerical scheme for solving the arising minimization problem, based on linearization and fixed-point iteration. We show how the proposed energy model can be optimized globally by making use of recent continuous convex relaxation techniques. The accuracy and robustness of the presented approach are demonstrated by evaluating it on multiple real data sets and comparing it to alternative segmentation methods based on level sets. Although the proposed model is designed with focus on the particular application at hand, it is general enough to be applied to a variety of different segmentation tasks. KW - 3D segmentation KW - Convex optimization KW - Vesicle membrane analysis KW - Fluorescence imaging KW - Dreidimensionale Bildverarbeitung KW - Bildsegmentierung KW - Konvexe Optimierung Y1 - 2011 U6 - https://doi.org/10.1016/j.patcog.2011.04.019 VL - 44 IS - 12 SP - 2944 EP - 2958 PB - Elsevier ER - TY - CHAP A1 - Palm, Christoph ED - Byrne, Michael F. ED - Parsa, Nasim ED - Greenhill, Alexandra T. ED - Chahal, Daljeet ED - Ahmad, Omer ED - Bargci, Ulas T1 - History, Core Concepts, and Role of AI in Clinical Medicine T2 - AI in Clinical Medicine: A Practical Guide for Healthcare Professionals N2 - The field of AI is characterized by robust promises, astonishing successes, and remarkable breakthroughs. AI will play a major role in all domains of clinical medicine, but the role of AI in relation to the physician is not yet completely determined. The term artificial intelligence or AI is broad, and several different terms are used in this context that must be organized and demystified. This chapter will review the key concepts and methods of AI, and will introduce some of the different roles for AI in relation to the physician. KW - artificial intelligence KW - healthcare Y1 - 2023 SN - 978-1-119-79064-8 U6 - https://doi.org/10.1002/9781119790686.ch5 SP - 49 EP - 55 PB - Wiley ET - 1. Aufl. ER - TY - JOUR A1 - Ruewe, Marc A1 - Eigenberger, Andreas A1 - Klein, Silvan A1 - von Riedheim, Antonia A1 - Gugg, Christine A1 - Prantl, Lukas A1 - Palm, Christoph A1 - Weiherer, Maximilian A1 - Zeman, Florian A1 - Anker, Alexandra T1 - Precise Monitoring of Returning Sensation in Digital Nerve Lesions by 3-D Imaging: A Proof-of-Concept Study JF - Plastic and Reconstructive Surgery N2 - Digital nerve lesions result in a loss of tactile sensation reflected by an anesthetic area (AA) at the radial or ulnar aspect of the respective digit. Yet, available tools to monitor the recovery of tactile sense have been criticized for their lack of validity. However, the precise quantification of AA dynamics by three-dimensional (3-D) imaging could serve as an accurate surrogate to monitor recovery following digital nerve repair. For validation, AAs were marked on digits of healthy volunteers to simulate the AA of an impaired cutaneous innervation. Three dimensional models were composed from raw images that had been acquired with a 3-D camera (Vectra H2) to precisely quantify relative AA for each digit (3-D models, n= 80). Operator properties varied regarding individual experience in 3-D imaging and image processing. Additionally, the concept was applied in a clinical case study. Images taken by experienced photographers were rated better quality (p< 0.001) and needed less processing time (p= 0.020). Quantification of the relative AA was neither altered significantly by experience levels of the photographer (p= 0.425) nor the image assembler (p= 0.749). The proposed concept allows precise and reliable surface quantification of digits and can be performed consistently without relevant distortion by lack of examiner experience. Routine 3-D imaging of the AA has the great potential to provide visual evidence of various returning states of sensation and to convert sensory nerve recovery into a metric variable with high responsiveness to temporal progress. KW - 3D imaging Y1 - 2023 U6 - https://doi.org/10.1097/PRS.0000000000010456 SN - 1529-4242 VL - 152 IS - 4 SP - 670e EP - 674e PB - Lippincott Williams & Wilkins CY - Philadelphia, Pa. ER - TY - GEN A1 - Scheppach, Markus A1 - Rauber, David A1 - Stallhofer, Johannes A1 - Muzalyova, Anna A1 - Otten, Vera A1 - Manzeneder, Carolin A1 - Schwamberger, Tanja A1 - Wanzl, Julia A1 - Schlottmann, Jakob A1 - Tadic, Vidan A1 - Probst, Andreas A1 - Schnoy, Elisabeth A1 - Römmele, Christoph A1 - Fleischmann, Carola A1 - Meinikheim, Michael A1 - Miller, Silvia A1 - Märkl, Bruno A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Performance comparison of a deep learning algorithm with endoscopists in the detection of duodenal villous atrophy (VA) T2 - Endoscopy N2 - Aims  VA is an endoscopic finding of celiac disease (CD), which can easily be missed if pretest probability is low. In this study, we aimed to develop an artificial intelligence (AI) algorithm for the detection of villous atrophy on endoscopic images. Methods 858 images from 182 patients with VA and 846 images from 323 patients with normal duodenal mucosa were used for training and internal validation of an AI algorithm (ResNet18). A separate dataset was used for external validation, as well as determination of detection performance of experts, trainees and trainees with AI support. According to the AI consultation distribution, images were stratified into “easy” and “difficult”. Results Internal validation showed 82%, 85% and 84% for sensitivity, specificity and accuracy. External validation showed 90%, 76% and 84%. The algorithm was significantly more sensitive and accurate than trainees, trainees with AI support and experts in endoscopy. AI support in trainees was associated with significantly improved performance. While all endoscopists showed significantly lower detection for “difficult” images, AI performance remained stable. Conclusions The algorithm outperformed trainees and experts in sensitivity and accuracy for VA detection. The significant improvement with AI support suggests a potential clinical benefit. Stable performance of the algorithm in “easy” and “difficult” test images may indicate an advantage in macroscopically challenging cases. Y1 - 2023 U6 - https://doi.org/10.1055/s-0043-1765421 VL - 55 IS - S02 PB - Thieme ER - TY - JOUR A1 - Mang, Andreas A1 - Schnabel, Julia A. A1 - Crum, William R. A1 - Modat, Marc A1 - Camara-Rey, Oscar A1 - Palm, Christoph A1 - Caseiras, Gisele Brasil A1 - Jäger, H. Rolf A1 - Ourselin, Sébastien A1 - Buzug, Thorsten M. A1 - Hawkes, David J. T1 - Consistency of parametric registration in serial MRI studies of brain tumor progression JF - International Journal of Computer Assisted Radiology and Surgery N2 - Object The consistency of parametric registration in multi-temporal magnetic resonance (MR) imaging studies was evaluated. Materials and methods Serial MRI scans of adult patients with a brain tumor (glioma) were aligned by parametric registration. The performance of low-order spatial alignment (6/9/12 degrees of freedom) of different 3D serial MR-weighted images is evaluated. A registration protocol for the alignment of all images to one reference coordinate system at baseline is presented. Registration results were evaluated for both, multimodal intra-timepoint and mono-modal multi-temporal registration. The latter case might present a challenge to automatic intensity-based registration algorithms due to ill-defined correspondences. The performance of our algorithm was assessed by testing the inverse registration consistency. Four different similarity measures were evaluated to assess consistency. Results Careful visual inspection suggests that images are well aligned, but their consistency may be imperfect. Sub-voxel inconsistency within the brain was found for allsimilarity measures used for parametric multi-temporal registration. T1-weighted images were most reliable for establishing spatial correspondence between different timepoints. Conclusions The parametric registration algorithm is feasible for use in this application. The sub-voxel resolution mean displacement error of registration transformations demonstrates that the algorithm converges to an almost identical solution for forward and reverse registration. KW - Inverse registration consistency KW - Parametric serial MR image registration KW - Tumor disease progression KW - Kernspintomografie KW - Registrierung KW - Hirntumor Y1 - 2008 U6 - https://doi.org/10.1007/s11548-008-0234-5 VL - 3 IS - 3-4 SP - 201 EP - 211 ER - TY - CHAP A1 - Chang, Ching-Sheng A1 - Lin, Jin-Fa A1 - Lee, Ming-Ching A1 - Palm, Christoph ED - Tolxdorff, Thomas ED - Deserno, Thomas M. ED - Handels, Heinz ED - Maier, Andreas ED - Maier-Hein, Klaus H. ED - Palm, Christoph T1 - Semantic Lung Segmentation Using Convolutional Neural Networks T2 - Bildverarbeitung für die Medizin 2020. Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 15. bis 17. März 2020 in Berlin N2 - Chest X-Ray (CXR) images as part of a non-invasive diagnosis method are commonly used in today’s medical workflow. In traditional methods, physicians usually use their experience to interpret CXR images, however, there is a large interobserver variance. Computer vision may be used as a standard for assisted diagnosis. In this study, we applied an encoder-decoder neural network architecture for automatic lung region detection. We compared a three-class approach (left lung, right lung, background) and a two-class approach (lung, background). The differentiation of left and right lungs as direct result of a semantic segmentation on basis of neural nets rather than post-processing a lung-background segmentation is done here for the first time. Our evaluation was done on the NIH Chest X-ray dataset, from which 1736 images were extracted and manually annotated. We achieved 94:9% mIoU and 92% mIoU as segmentation quality measures for the two-class-model and the three-class-model, respectively. This result is very promising for the segmentation of lung regions having the simultaneous classification of left and right lung in mind. KW - Neuronales Netz KW - Segmentierung KW - Brustkorb KW - Deep Learning KW - Encoder-Decoder Network KW - Chest X-Ray Y1 - 2020 SN - 978-3-658-29266-9 U6 - https://doi.org/10.1007/978-3-658-29267-6_17 SP - 75 EP - 80 PB - Springer Vieweg CY - Wiesbaden ER - TY - CHAP A1 - Weber, Joachim A1 - Brawanski, Alexander A1 - Palm, Christoph T1 - Parallelization of FSL-Fast segmentation of MRI brain data T2 - 58. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e.V. (GMDS 2013), Lübeck, 01.-05.09.2013 Y1 - 2013 U6 - https://doi.org/10.3205/13gmds261 N1 - Meeting Abstract IS - DocAbstr. 329 PB - German Medical Science GMS Publishing House CY - Düsseldorf ER - TY - JOUR A1 - Neuschaefer-Rube, C. A1 - Lehmann, Thomas M. A1 - Palm, Christoph A1 - Bredno, J. A1 - Klajman, S. A1 - Spitzer, Klaus T1 - 3D-Visualisierung glottaler Abduktionsbewegungen JF - Aktuelle phoniatrisch-pädaudiologische Aspekte Y1 - 2001 SN - 3-922766-76-5 VL - 2001/2002 IS - 9 SP - 58 EP - 61 PB - Median ER - TY - JOUR A1 - Palm, Christoph A1 - Dehnhardt, Markus A1 - Vieten, Andrea A1 - Pietrzyk, Uwe A1 - Bauer, Andreas A1 - Zilles, Karl T1 - 3D rat brain tumors JF - Naunyn-Schmiedebergs Archives of Pharmacology Y1 - 2005 VL - 371 IS - R103 ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Artificial Intelligence (AI) – assisted vessel and tissue recognition during third space endoscopy (Smart ESD) T2 - Zeitschrift für Gastroenterologie N2 - Clinical setting  Third space procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex minimally invasive techniques with an elevated risk for operator-dependent adverse events such as bleeding and perforation. This risk arises from accidental dissection into the muscle layer or through submucosal blood vessels as the submucosal cutting plane within the expanding resection site is not always apparent. Deep learning algorithms have shown considerable potential for the detection and characterization of gastrointestinal lesions. So-called AI – clinical decision support solutions (AI-CDSS) are commercially available for polyp detection during colonoscopy. Until now, these computer programs have concentrated on diagnostics whereas an AI-CDSS for interventional endoscopy has not yet been introduced. We aimed to develop an AI-CDSS („Smart ESD“) for real-time intra-procedural detection and delineation of blood vessels, tissue structures and endoscopic instruments during third-space endoscopic procedures. Characteristics of Smart ESD  An AI-CDSS was invented that delineates blood vessels, tissue structures and endoscopic instruments during third-space endoscopy in real-time. The output can be displayed by an overlay over the endoscopic image with different modes of visualization, such as a color-coded semitransparent area overlay, or border tracing (demonstration video). Hereby the optimal layer for dissection can be visualized, which is close above or directly at the muscle layer, depending on the applied technique (ESD or POEM). Furthermore, relevant blood vessels (thickness> 1mm) are delineated. Spatial proximity between the electrosurgical knife and a blood vessel triggers a warning signal. By this guidance system, inadvertent dissection through blood vessels could be averted. Technical specifications  A DeepLabv3+ neural network architecture with KSAC and a 101-layer ResNeSt backbone was used for the development of Smart ESD. It was trained and validated with 2565 annotated still images from 27 full length third-space endoscopic videos. The annotation classes were blood vessel, submucosal layer, muscle layer, electrosurgical knife and endoscopic instrument shaft. A test on a separate data set yielded an intersection over union (IoU) of 68%, a Dice Score of 80% and a pixel accuracy of 87%, demonstrating a high overlap between expert and AI segmentation. Further experiments on standardized video clips showed a mean vessel detection rate (VDR) of 85% with values of 92%, 70% and 95% for POEM, rectal ESD and esophageal ESD respectively. False positive measurements occurred 0.75 times per minute. 7 out of 9 vessels which caused intraprocedural bleeding were caught by the algorithm, as well as both vessels which required hemostasis via hemostatic forceps. Future perspectives  Smart ESD performed well for vessel and tissue detection and delineation on still images, as well as on video clips. During a live demonstration in the endoscopy suite, clinical applicability of the innovation was examined. The lag time for processing of the live endoscopic image was too short to be visually detectable for the interventionist. Even though the algorithm could not be applied during actual dissection by the interventionist, Smart ESD appeared readily deployable during visual assessment by ESD experts. Therefore, we plan to conduct a clinical trial in order to obtain CE-certification of the algorithm. This new technology may improve procedural safety and speed, as well as training of modern minimally invasive endoscopic resection techniques. KW - Artificial Intelligence KW - Medical Image Computing KW - Endoscopy KW - Bildgebendes Verfahren KW - Medizin KW - Künstliche Intelligenz KW - Endoskopie Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1755110 VL - 60 IS - 08 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - GEN A1 - Roser, D. A. A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Palm, Christoph A1 - Probst, Andreas A1 - Muzalyova, A. A1 - Scheppach, Markus W. A1 - Nagl, S. A1 - Schnoy, Elisabeth A1 - Römmele, Christoph A1 - Schulz, D. A1 - Schlottmann, Jakob A1 - Prinz, Friederike A1 - Rauber, David A1 - Rückert, Tobias A1 - Matsumura, T. A1 - Fernandez-Esparrach, G. A1 - Parsa, N. A1 - Byrne, M. A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Human-Computer Interaction: Impact of Artificial Intelligence on the diagnostic confidence of endoscopists assessing videos of Barrett’s esophagus T2 - Endoscopy N2 - Aims Human-computer interactions (HCI) may have a relevant impact on the performance of Artificial Intelligence (AI). Studies show that although endoscopists assessing Barrett’s esophagus (BE) with AI improve their performance significantly, they do not achieve the level of the stand-alone performance of AI. One aspect of HCI is the impact of AI on the degree of certainty and confidence displayed by the endoscopist. Indirectly, diagnostic confidence when using AI may be linked to trust and acceptance of AI. In a BE video study, we aimed to understand the impact of AI on the diagnostic confidence of endoscopists and the possible correlation with diagnostic performance. Methods 22 endoscopists from 12 centers with varying levels of BE experience reviewed ninety-six standardized endoscopy videos. Endoscopists were categorized into experts and non-experts and randomly assigned to assess the videos with and without AI. Participants were randomized in two arms: Arm A assessed videos first without AI and then with AI, while Arm B assessed videos in the opposite order. Evaluators were tasked with identifying BE-related neoplasia and rating their confidence with and without AI on a scale from 0 to 9. Results The utilization of AI in Arm A (without AI first, with AI second) significantly elevated confidence levels for experts and non-experts (7.1 to 8.0 and 6.1 to 6.6, respectively). Only non-experts benefitted from AI with a significant increase in accuracy (68.6% to 75.5%). Interestingly, while the confidence levels of experts without AI were higher than those of non-experts with AI, there was no significant difference in accuracy between these two groups (71.3% vs. 75.5%). In Arm B (with AI first, without AI second), experts and non-experts experienced a significant reduction in confidence (7.6 to 7.1 and 6.4 to 6.2, respectively), while maintaining consistent accuracy levels (71.8% to 71.8% and 67.5% to 67.1%, respectively). Conclusions AI significantly enhanced confidence levels for both expert and non-expert endoscopists. Endoscopists felt significantly more uncertain in their assessments without AI. Furthermore, experts with or without AI consistently displayed higher confidence levels than non-experts with AI, irrespective of comparable outcomes. These findings underscore the possible role of AI in improving diagnostic confidence during endoscopic assessment. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1782859 SN - 1438-8812 VL - 56 IS - S 02 SP - 79 PB - Georg Thieme Verlag ER - TY - GEN A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Scheppach, Markus W. A1 - Probst, Andreas A1 - Prinz, Friederike A1 - Schwamberger, Tanja A1 - Schlottmann, Jakob A1 - Gölder, Stefan Karl A1 - Walter, Benjamin A1 - Steinbrück, Ingo A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - INFLUENCE OF AN ARTIFICIAL INTELLIGENCE (AI) BASED DECISION SUPPORT SYSTEM (DSS) ON THE DIAGNOSTIC PERFORMANCE OF NON-EXPERTS IN BARRETT´S ESOPHAGUS RELATED NEOPLASIA (BERN) T2 - Endoscopy N2 - Aims Barrett´s esophagus related neoplasia (BERN) is difficult to detect and characterize during endoscopy, even for expert endoscopists. We aimed to assess the add-on effect of an Artificial Intelligence (AI) algorithm (Barrett-Ampel) as a decision support system (DSS) for non-expert endoscopists in the evaluation of Barrett’s esophagus (BE) and BERN. Methods Twelve videos with multimodal imaging white light (WL), narrow-band imaging (NBI), texture and color enhanced imaging (TXI) of histologically confirmed BE and BERN were assessed by expert and non-expert endoscopists. For each video, endoscopists were asked to identify the area of BERN and decide on the biopsy spot. Videos were assessed by the AI algorithm and regions of BERN were highlighted in real-time by a transparent overlay. Finally, endoscopists were shown the AI videos and asked to either confirm or change their initial decision based on the AI support. Results Barrett-Ampel correctly identified all areas of BERN, irrespective of the imaging modality (WL, NBI, TXI), but misinterpreted two inflammatory lesions (Accuracy=75%). Expert endoscopists had a similar performance (Accuracy=70,8%), while non-experts had an accuracy of 58.3%. When AI was implemented as a DSS, non-expert endoscopists improved their diagnostic accuracy to 75%. Conclusions AI may have the potential to support non-expert endoscopists in the assessment of videos of BE and BERN. Limitations of this study include the low number of videos used. Randomized clinical trials in a real-life setting should be performed to confirm these results. KW - Artificial Intelligence KW - Barrett's Esophagus KW - Speiseröhrenkrankheit KW - Künstliche Intelligenz KW - Diagnose Y1 - 2022 U6 - https://doi.org/10.1055/s-00000012 VL - 54 IS - S 01 SP - S39 PB - Thieme ER - TY - JOUR A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Palm, Christoph A1 - Probst, Andreas A1 - Muzalyova, Anna A1 - Scheppach, Markus Wolfgang A1 - Nagl, Sandra A1 - Schnoy, Elisabeth A1 - Römmele, Christoph A1 - Schulz, Dominik Andreas Helmut Otto A1 - Schlottmann, Jakob A1 - Prinz, Friederike A1 - Rauber, David A1 - Rückert, Tobias A1 - Matsumura, Tomoaki A1 - Fernández-Esparrach, Glòria A1 - Parsa, Nasim A1 - Byrne, Michael F A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Effect of AI on performance of endoscopists to detect Barrett neoplasia: A Randomized Tandem Trial JF - Endoscopy N2 - Background and study aims To evaluate the effect of an AI-based clinical decision support system (AI) on the performance and diagnostic confidence of endoscopists during the assessment of Barrett's esophagus (BE). Patients and Methods Ninety-six standardized endoscopy videos were assessed by 22 endoscopists from 12 different centers with varying degrees of BE experience. The assessment was randomized into two video sets: Group A (review first without AI and second with AI) and group B (review first with AI and second without AI). Endoscopists were required to evaluate each video for the presence of Barrett's esophagus-related neoplasia (BERN) and then decide on a spot for a targeted biopsy. After the second assessment, they were allowed to change their clinical decision and confidence level. Results AI had a standalone sensitivity, specificity, and accuracy of 92.2%, 68.9%, and 81.6%, respectively. Without AI, BE experts had an overall sensitivity, specificity, and accuracy of 83.3%, 58.1 and 71.5%, respectively. With AI, BE nonexperts showed a significant improvement in sensitivity and specificity when videos were assessed a second time with AI (sensitivity 69.7% (95% CI, 65.2% - 74.2%) to 78.0% (95% CI, 74.0% - 82.0%); specificity 67.3% (95% CI, 62.5% - 72.2%) to 72.7% (95 CI, 68.2% - 77.3%). In addition, the diagnostic confidence of BE nonexperts improved significantly with AI. Conclusion BE nonexperts benefitted significantly from the additional AI. BE experts and nonexperts remained below the standalone performance of AI, suggesting that there may be other factors influencing endoscopists to follow or discard AI advice. Y1 - 2024 U6 - https://doi.org/10.1055/a-2296-5696 SN - 0013-726X N1 - Accepted Manuscript PB - Georg Thieme Verlag ER - TY - JOUR A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - ARTIFICIAL INTELLIGENCE (AI) – ASSISTED VESSEL AND TISSUE RECOGNITION IN THIRD-SPACE ENDOSCOPY JF - Endoscopy N2 - Aims Third-space endoscopy procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex interventions with elevated risk of operator-dependent adverse events, such as intra-procedural bleeding and perforation. We aimed to design an artificial intelligence clinical decision support solution (AI-CDSS, “Smart ESD”) for the detection and delineation of vessels, tissue structures, and instruments during third-space endoscopy procedures. Methods Twelve full-length third-space endoscopy videos were extracted from the Augsburg University Hospital database. 1686 frames were annotated for the following categories: Submucosal layer, blood vessels, electrosurgical knife and endoscopic instrument. A DeepLabv3+neural network with a 101-layer ResNet backbone was trained and validated internally. Finally, the ability of the AI system to detect visible vessels during ESD and POEM was determined on 24 separate video clips of 7 to 46 seconds duration and showing 33 predefined vessels. These video clips were also assessed by an expert in third-space endoscopy. Results Smart ESD showed a vessel detection rate (VDR) of 93.94%, while an average of 1.87 false positive signals were recorded per minute. VDR of the expert endoscopist was 90.1% with no false positive findings. On the internal validation data set using still images, the AI system demonstrated an Intersection over Union (IoU), mean Dice score and pixel accuracy of 63.47%, 76.18% and 86.61%, respectively. Conclusions This is the first AI-CDSS aiming to mitigate operator-dependent limitations during third-space endoscopy. Further clinical trials are underway to better understand the role of AI in such procedures. KW - Artificial Intelligence KW - Third-Space Endoscopy KW - Smart ESD Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1745037 VL - 54 IS - S01 SP - S175 PB - Thieme ER - TY - CHAP A1 - Rueckert, Tobias A1 - Rieder, Maximilian A1 - Feussner, Hubertus A1 - Wilhelm, Dirk A1 - Rueckert, Daniel A1 - Palm, Christoph ED - Maier, Andreas ED - Deserno, Thomas M. ED - Handels, Heinz ED - Maier-Hein, Klaus ED - Palm, Christoph ED - Tolxdorff, Thomas T1 - Smoke Classification in Laparoscopic Cholecystectomy Videos Incorporating Spatio-temporal Information T2 - Bildverarbeitung für die Medizin 2024: Proceedings, German Workshop on Medical Image Computing, March 10-12, 2024, Erlangen N2 - Heavy smoke development represents an important challenge for operating physicians during laparoscopic procedures and can potentially affect the success of an intervention due to reduced visibility and orientation. Reliable and accurate recognition of smoke is therefore a prerequisite for the use of downstream systems such as automated smoke evacuation systems. Current approaches distinguish between non-smoked and smoked frames but often ignore the temporal context inherent in endoscopic video data. In this work, we therefore present a method that utilizes the pixel-wise displacement from randomly sampled images to the preceding frames determined using the optical flow algorithm by providing the transformed magnitude of the displacement as an additional input to the network. Further, we incorporate the temporal context at evaluation time by applying an exponential moving average on the estimated class probabilities of the model output to obtain more stable and robust results over time. We evaluate our method on two convolutional-based and one state-of-the-art transformer architecture and show improvements in the classification results over a baseline approach, regardless of the network used. Y1 - 2024 U6 - https://doi.org/10.1007/978-3-658-44037-4_78 SP - 298 EP - 303 PB - Springeer CY - Wiesbaden ER - TY - GEN A1 - Römmele, Christoph A1 - Mendel, Robert A1 - Rauber, David A1 - Rückert, Tobias A1 - Byrne, Michael F. A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Endoscopic Diagnosis of Eosinophilic Esophagitis Using a deep Learning Algorithm T2 - Endoscopy N2 - Aims Eosinophilic esophagitis (EoE) is easily missed during endoscopy, either because physicians are not familiar with its endoscopic features or the morphologic changes are too subtle. In this preliminary paper, we present the first attempt to detect EoE in endoscopic white light (WL) images using a deep learning network (EoE-AI). Methods 401 WL images of eosinophilic esophagitis and 871 WL images of normal esophageal mucosa were evaluated. All images were assessed for the Endoscopic Reference score (EREFS) (edema, rings, exudates, furrows, strictures). Images with strictures were excluded. EoE was defined as the presence of at least 15 eosinophils per high power field on biopsy. A convolutional neural network based on the ResNet architecture with several five-fold cross-validation runs was used. Adding auxiliary EREFS-classification branches to the neural network allowed the inclusion of the scores as optimization criteria during training. EoE-AI was evaluated for sensitivity, specificity, and F1-score. In addition, two human endoscopists evaluated the images. Results EoE-AI showed a mean sensitivity, specificity, and F1 of 0.759, 0.976, and 0.834 respectively, averaged over the five distinct cross-validation runs. With the EREFS-augmented architecture, a mean sensitivity, specificity, and F1-score of 0.848, 0.945, and 0.861 could be demonstrated respectively. In comparison, the two human endoscopists had an average sensitivity, specificity, and F1-score of 0.718, 0.958, and 0.793. Conclusions To the best of our knowledge, this is the first application of deep learning to endoscopic images of EoE which were also assessed after augmentation with the EREFS-score. The next step is the evaluation of EoE-AI using an external dataset. We then plan to assess the EoE-AI tool on endoscopic videos, and also in real-time. This preliminary work is encouraging regarding the ability for AI to enhance physician detection of EoE, and potentially to do a true “optical biopsy” but more work is needed. KW - Eosinophilic Esophagitis KW - Endoscopy KW - Deep Learning Y1 - 2021 U6 - https://doi.org/10.1055/s-0041-1724274 VL - 53 IS - S 01 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - GEN A1 - Scheppach, Markus W. A1 - Rauber, David A1 - Mendel, Robert A1 - Palm, Christoph A1 - Byrne, Michael F. A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Detection Of Celiac Disease Using A Deep Learning Algorithm T2 - Endoscopy N2 - Aims Celiac disease (CD) is a complex condition caused by an autoimmune reaction to ingested gluten. Due to its polymorphic manifestation and subtle endoscopic presentation, the diagnosis is difficult and thus the disorder is underreported. We aimed to use deep learning to identify celiac disease on endoscopic images of the small bowel. Methods Patients with small intestinal histology compatible with CD (MARSH classification I-III) were extracted retrospectively from the database of Augsburg University hospital. They were compared to patients with no clinical signs of CD and histologically normal small intestinal mucosa. In a first step MARSH III and normal small intestinal mucosa were differentiated with the help of a deep learning algorithm. For this, the endoscopic white light images were divided into five equal-sized subsets. We avoided splitting the images of one patient into several subsets. A ResNet-50 model was trained with the images from four subsets and then validated with the remaining subset. This process was repeated for each subset, such that each subset was validated once. Sensitivity, specificity, and harmonic mean (F1) of the algorithm were determined. Results The algorithm showed values of 0.83, 0.88, and 0.84 for sensitivity, specificity, and F1, respectively. Further data showing a comparison between the detection rate of the AI model and that of experienced endoscopists will be available at the time of the upcoming conference. Conclusions We present the first clinical report on the use of a deep learning algorithm for the detection of celiac disease using endoscopic images. Further evaluation on an external data set, as well as in the detection of CD in real-time, will follow. However, this work at least suggests that AI can assist endoscopists in the endoscopic diagnosis of CD, and ultimately may be able to do a true optical biopsy in live-time. KW - Celiac Disease KW - Deep Learning Y1 - 2021 U6 - https://doi.org/10.1055/s-0041-1724970 N1 - Digital poster exhibition VL - 53 IS - S 01 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Probst, Andreas A1 - Meinikheim, Michael A1 - Byrne, Michael F. A1 - Messmann, Helmut A1 - Palm, Christoph T1 - Multimodal imaging for detection and segmentation of Barrett’s esophagus-related neoplasia using artificial intelligence JF - Endoscopy N2 - The early diagnosis of cancer in Barrett’s esophagus is crucial for improving the prognosis. However, identifying Barrett’s esophagus-related neoplasia (BERN) is challenging, even for experts [1]. Four-quadrant biopsies may improve the detection of neoplasia, but they can be associated with sampling errors. The application of artificial intelligence (AI) to the assessment of Barrett’s esophagus could improve the diagnosis of BERN, and this has been demonstrated in both preclinical and clinical studies [2] [3]. In this video demonstration, we show the accurate detection and delineation of BERN in two patients ([Video 1]). In part 1, the AI system detects a mucosal cancer about 20 mm in size and accurately delineates the lesion in both white-light and narrow-band imaging. In part 2, a small island of BERN with high-grade dysplasia is detected and delineated in white-light, narrow-band, and texture and color enhancement imaging. The video shows the results using a transparent overlay of the mucosal cancer in real time as well as a full segmentation preview. Additionally, the optical flow allows for the assessment of endoscope movement, something which is inversely related to the reliability of the AI prediction. We demonstrate that multimodal imaging can be applied to the AI-assisted detection and segmentation of even small focal lesions in real time. KW - Video KW - Artificial Intelligence KW - Multimodal Imaging Y1 - 2022 U6 - https://doi.org/10.1055/a-1704-7885 VL - 54 IS - 10 PB - Georg Thieme Verlag CY - Stuttgart ET - E-Video ER - TY - INPR A1 - Mendel, Robert A1 - Rueckert, Tobias A1 - Wilhelm, Dirk A1 - Rueckert, Daniel A1 - Palm, Christoph T1 - Motion-Corrected Moving Average: Including Post-Hoc Temporal Information for Improved Video Segmentation N2 - Real-time computational speed and a high degree of precision are requirements for computer-assisted interventions. Applying a segmentation network to a medical video processing task can introduce significant inter-frame prediction noise. Existing approaches can reduce inconsistencies by including temporal information but often impose requirements on the architecture or dataset. This paper proposes a method to include temporal information in any segmentation model and, thus, a technique to improve video segmentation performance without alterations during training or additional labeling. With Motion-Corrected Moving Average, we refine the exponential moving average between the current and previous predictions. Using optical flow to estimate the movement between consecutive frames, we can shift the prior term in the moving-average calculation to align with the geometry of the current frame. The optical flow calculation does not require the output of the model and can therefore be performed in parallel, leading to no significant runtime penalty for our approach. We evaluate our approach on two publicly available segmentation datasets and two proprietary endoscopic datasets and show improvements over a baseline approach. KW - Deep Learning KW - Video KW - Segmentation Y1 - 2024 U6 - https://doi.org/10.48550/arXiv.2403.03120 ER - TY - CHAP A1 - Mendel, Robert A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Palm, Christoph T1 - Barrett’s Esophagus Analysis Using Convolutional Neural Networks T2 - Bildverarbeitung für die Medizin 2017; Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 12. bis 14. März 2017 in Heidelberg N2 - We propose an automatic approach for early detection of adenocarcinoma in the esophagus. High-definition endoscopic images (50 cancer, 50 Barrett) are partitioned into a dataset containing approximately equal amounts of patches showing cancerous and non-cancerous regions. A deep convolutional neural network is adapted to the data using a transfer learning approach. The final classification of an image is determined by at least one patch, for which the probability being a cancer patch exceeds a given threshold. The model was evaluated with leave one patient out cross-validation. With sensitivity and specificity of 0.94 and 0.88, respectively, our findings improve recently published results on the same image data base considerably. Furthermore, the visualization of the class probabilities of each individual patch indicates, that our approach might be extensible to the segmentation domain. KW - Speiseröhrenkrebs KW - Diagnose KW - Maschinelles Lernen KW - Bilderkennung KW - Automatische Klassifikation Y1 - 2017 U6 - https://doi.org/10.1007/978-3-662-54345-0_23 SP - 80 EP - 85 PB - Springer CY - Berlin ER - TY - CHAP A1 - Gutbrod, Max A1 - Geisler, Benedikt A1 - Rauber, David A1 - Palm, Christoph ED - Maier, Andreas ED - Deserno, Thomas M. ED - Handels, Heinz ED - Maier-Hein, Klaus ED - Palm, Christoph ED - Tolxdorff, Thomas T1 - Data Augmentation for Images of Chronic Foot Wounds T2 - Bildverarbeitung für die Medizin 2024: Proceedings, German Workshop on Medical Image Computing, March 10-12, 2024, Erlangen N2 - Training data for Neural Networks is often scarce in the medical domain, which often results in models that struggle to generalize and consequently showpoor performance on unseen datasets. Generally, adding augmentation methods to the training pipeline considerably enhances a model’s performance. Using the dataset of the Foot Ulcer Segmentation Challenge, we analyze two additional augmentation methods in the domain of chronic foot wounds - local warping of wound edges along with projection and blurring of shapes inside wounds. Our experiments show that improvements in the Dice similarity coefficient and Normalized Surface Distance metrics depend on a sensible selection of those augmentation methods. Y1 - 2024 U6 - https://doi.org/10.1007/978-3-658-44037-4_71 SP - 261 EP - 266 PB - Springer CY - Wiesbaden ER - TY - CHAP A1 - Rauber, David A1 - Mendel, Robert A1 - Scheppach, Markus W. A1 - Ebigbo, Alanna A1 - Messmann, Helmut A1 - Palm, Christoph T1 - Analysis of Celiac Disease with Multimodal Deep Learning T2 - Bildverarbeitung für die Medizin 2022: Proceedings, German Workshop on Medical Image Computing, Heidelberg, June 26-28, 2022 N2 - Celiac disease is an autoimmune disorder caused by gluten that results in an inflammatory response of the small intestine.We investigated whether celiac disease can be detected using endoscopic images through a deep learning approach. The results show that additional clinical parameters can improve the classification accuracy. In this work, we distinguished between healthy tissue and Marsh III, according to the Marsh score system. We first trained a baseline network to classify endoscopic images of the small bowel into these two classes and then augmented the approach with a multimodality component that took the antibody status into account. KW - Deep Learning KW - Endoscopy Y1 - 2022 U6 - https://doi.org/10.1007/978-3-658-36932-3_25 SP - 115 EP - 120 PB - Springer Vieweg CY - Wiesbaden ER - TY - GEN A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Scheppach, Markus W. A1 - Probst, Andreas A1 - Prinz, Friederike A1 - Schwamberger, Tanja A1 - Schlottmann, Jakob A1 - Gölder, Stefan Karl A1 - Walter, Benjamin A1 - Steinbrück, Ingo A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Einsatz von künstlicher Intelligenz (KI) als Entscheidungsunterstützungssystem für nicht-Experten bei der Beurteilung von Barrett-Ösophagus assoziierten Neoplasien (BERN) T2 - Zeitschrift für Gastroenterologie N2 - Einleitung Die sichere Detektion und Charakterisierung von Barrett-Ösophagus assoziierten Neoplasien (BERN) stellt selbst für erfahrene Endoskopiker eine Herausforderung dar. Ziel Ziel dieser Studie ist es, den Add-on Effekt eines künstlichen Intelligenz (KI) Systems (Barrett-Ampel) als Entscheidungsunterstüzungssystem für Endoskopiker ohne Expertise bei der Untersuchung von BERN zu evaluieren. Material und Methodik Zwölf Videos in „Weißlicht“ (WL), „narrow-band imaging“ (NBI) und „texture and color enhanced imaging“ (TXI) von histologisch bestätigten Barrett-Metaplasien oder BERN wurden von Experten und Untersuchern ohne Barrett-Expertise evaluiert. Die Probanden wurden dazu aufgefordert in den Videos auftauchende BERN zu identifizieren und gegebenenfalls die optimale Biopsiestelle zu markieren. Unser KI-System wurde demselben Test unterzogen, wobei dieses BERN in Echtzeit segmentierte und farblich von umliegendem Epithel differenzierte. Anschließend wurden den Probanden die Videos mit zusätzlicher KI-Unterstützung gezeigt. Basierend auf dieser neuen Information, wurden die Probanden zu einer Reevaluation ihrer initialen Beurteilung aufgefordert. Ergebnisse Die „Barrett-Ampel“ identifizierte unabhängig von den verwendeten Darstellungsmodi (WL, NBI, TXI) alle BERN. Zwei entzündlich veränderte Läsionen wurden fehlinterpretiert (Genauigkeit=75%). Während Experten vergleichbare Ergebnisse erzielten (Genauigkeit=70,8%), hatten Endoskopiker ohne Expertise bei der Beurteilung von Barrett-Metaplasien eine Genauigkeit von lediglich 58,3%. Wurden die nicht-Experten allerdings von unserem KI-System unterstützt, erreichten diese eine Genauigkeit von 75%. Zusammenfassung Unser KI-System hat das Potential als Entscheidungsunterstützungssystem bei der Differenzierung zwischen Barrett-Metaplasie und BERN zu fungieren und so Endoskopiker ohne entsprechende Expertise zu assistieren. Eine Limitation dieser Studie ist die niedrige Anzahl an eingeschlossenen Videos. Um die Ergebnisse dieser Studie zu bestätigen, müssen randomisierte kontrollierte klinische Studien durchgeführt werden. KW - Barrett-Ösophagus KW - Künstliche Intelligenz Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1745653 VL - 60 IS - 4 SP - 251 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Intraprozedurale Strukturerkennung bei Third-Space Endoskopie mithilfe eines Deep-Learning Algorithmus T2 - Zeitschrift für Gastroenterologie N2 - Einleitung Third-Space Interventionen wie die endoskopische Submukosadissektion (ESD) und die perorale endoskopische Myotomie (POEM) sind technisch anspruchsvoll und mit einem erhöhten Risiko für intraprozedurale Komplikationen wie Blutung oder Perforation assoziiert. Moderne Computerprogramme zur Unterstützung bei diagnostischen Entscheidungen werden unter Einsatz von künstlicher Intelligenz (KI) in der Endoskopie bereits erfolgreich eingesetzt. Ziel der vorliegenden Arbeit war es, relevante anatomische Strukturen mithilfe eines Deep-Learning Algorithmus zu detektieren und segmentieren, um die Sicherheit und Anwendbarkeit von ESD und POEM zu erhöhen. Methoden Zwölf Videoaufnahmen in voller Länge von Third-Space Endoskopien wurden aus der Datenbank des Universitätsklinikums Augsburg extrahiert. 1686 Einzelbilder wurden für die Kategorien Submukosa, Blutgefäß, Dissektionsmesser und endoskopisches Instrument annotiert und segmentiert. Mit diesem Datensatz wurde ein DeepLabv3+neuronales Netzwerk auf der Basis eines ResNet mit 101 Schichten trainiert und intern anhand der Parameter Intersection over Union (IoU), Dice Score und Pixel Accuracy validiert. Die Fähigkeit des Algorithmus zur Gefäßdetektion wurde anhand von 24 Videoclips mit einer Spieldauer von 7 bis 46 Sekunden mit 33 vordefinierten Gefäßen evaluiert. Anhand dieses Tests wurde auch die Gefäßdetektionsrate eines Experten in der Third-Space Endoskopie ermittelt. Ergebnisse Der Algorithmus zeigte eine Gefäßdetektionsrate von 93,94% mit einer mittleren Rate an falsch positiven Signalen von 1,87 pro Minute. Die Gefäßdetektionsrate des Experten lag bei 90,1% ohne falsch positive Ergebnisse. In der internen Validierung an Einzelbildern wurde eine IoU von 63,47%, ein mittlerer Dice Score von 76,18% und eine Pixel Accuracy von 86,61% ermittelt. Zusammenfassung Dies ist der erste KI-Algorithmus, der für den Einsatz in der therapeutischen Endoskopie entwickelt wurde. Präliminäre Ergebnisse deuten auf eine mit Experten vergleichbare Detektion von Gefäßen während der Untersuchung hin. Weitere Untersuchungen sind nötig, um die Leistung des Algorithmus im Vergleich zum Experten genauer zu eruieren sowie einen möglichen klinischen Nutzen zu ermitteln. KW - Deep Learning KW - Third-Space Endoscopy Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1745652 VL - 60 IS - 04 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Tziatzios, Georgios A1 - Probst, Andreas A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Real-Time Diagnosis of an Early Barrett's Carcinoma using Artificial Intelligence (AI) - Video Case Demonstration T2 - Endoscopy N2 - Introduction We present a clinical case showing the real-time detection, characterization and delineation of an early Barrett’s cancer using AI. Patients and methods A 70-year old patient with a long-segment Barrett’s esophagus (C5M7) was assessed with an AI algorithm. Results The AI system detected a 10 mm focal lesion and AI characterization predicted cancer with a probability of >90%. After ESD resection, histopathology showed mucosal adenocarcinoma (T1a (m), R0) confirming AI diagnosis. Conclusion We demonstrate the real-time AI detection, characterization and delineation of a small and early mucosal Barrett’s cancer. KW - Artificial Intelligence KW - Barrett's Carcinoma KW - Speiseröhrenkrebs KW - Künstliche Intelligenz KW - Diagnose Y1 - 2020 U6 - https://doi.org/10.1055/s-0040-1704075 VL - 52 IS - S 01 PB - Thieme ER - TY - GEN A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Probst, Andreas A1 - Scheppach, Markus W. A1 - Nagl, Sandra A1 - Schnoy, Elisabeth A1 - Römmele, Christoph A1 - Prinz, Friederike A1 - Schlottmann, Jakob A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Ebigbo, Alanna T1 - Einfluss von Künstlicher Intelligenz auf die Performance von niedergelassenen Gastroenterolog:innen bei der Beurteilung von Barrett-Ösophagus T2 - Zeitschrift für Gastroenterologie N2 - Einleitung  Die Differenzierung zwischen nicht dysplastischem Barrett-Ösophagus (NDBE) und mit Barrett-Ösophagus assoziierten Neoplasien (BERN) während der endoskopischen Inspektion erfordert viel Expertise. Die frühe Diagnosestellung ist wichtig für die weitere Prognose des Barrett-Karzinoms. In Deutschland werden Patient:innen mit einem Barrett-Ösophagus (BE) in der Regel im niedergelassenen Sektor überwacht. Ziele  Ziel ist es, den Einfluss von einem auf Künstlicher Intelligenz (KI) basierenden klinischen Entscheidungsunterstützungssystems (CDSS) auf die Performance von niedergelassenen Gastroenterolog:innen (NG) bei der Evaluation von Barrett-Ösophagus (BE) zu untersuchen. Methodik  Es erfolgte die prospektive Sammlung von 96 unveränderten hochauflösenden Videos mit Fällen von Patient:innen mit histologisch bestätigtem NDBE und BERN. Alle eingeschlossenen Fälle enthielten mindestens zwei der folgenden Darstellungsmethoden: HD-Weißlichtendoskopie, Narrow Band Imaging oder Texture and Color Enhancement Imaging. Sechs NG von sechs unterschiedlichen Praxen wurden als Proband:innen eingeschlossen. Es erfolgte eine permutierte Block-Randomisierung der Videofälle in entweder Gruppe A oder Gruppe B. Gruppe A implizierte eine Evaluation des Falls durch Proband:innen zunächst ohne KI und anschließend mit KI als CDSS. In Gruppe B erfolgte die Evaluation in umgekehrter Reihenfolge. Anschließend erfolgte eine zufällige Wiedergabe der so entstandenen Subgruppen im Rahmen des Tests. Ergebnis  In diesem Test konnte ein von uns entwickeltes KI-System (Barrett-Ampel) eine Sensitivität von 92,2%, eine Spezifität von 68,9% und eine Accuracy von 81,3% erreichen. Mit der Hilfe von KI verbesserte sich die Sensitivität der NG von 64,1% auf 71,2% (p<0,001) und die Accuracy von 66,3% auf 70,8% (p=0,006) signifikant. Eine signifikante Verbesserung dieser Parameter zeigte sich ebenfalls, wenn die Proband:innen die Fälle zunächst ohne KI evaluierten (Gruppe A). Wurde der Fall jedoch als Erstes mit der Hilfe von KI evaluiert (Gruppe B), blieb die Performance nahezu konstant. Schlussfolgerung  Es konnte ein performantes KI-System zur Evaluation von BE entwickelt werden. NG verbessern sich bei der Evaluation von BE durch den Einsatz von KI. KW - Barrett-Ösophagus KW - Künstliche Intelligenz Y1 - 2023 UR - https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0043-1771711 U6 - https://doi.org/10.1055/s-0043-1771711 VL - 61 IS - 8 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Nagl, Sandra A1 - Meinikheim, Michael A1 - Yip, Hon Chi A1 - Lau, Louis Ho Shing A1 - Chiu, Philip Wai Yan A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Effekt eines Künstliche Intelligenz (KI) – Algorithmus auf die Gefäßdetektion bei third space Endoskopien T2 - Zeitschrift für Gastroenterologie N2 - Einleitung  Third space Endoskopieprozeduren wie die endoskopische Submukosadissektion (ESD) und die perorale endoskopische Myotomie (POEM) sind technisch anspruchsvoll und gehen mit untersucherabhängigen Komplikationen wie Blutungen und Perforationen einher. Grund hierfür ist die unabsichtliche Durchschneidung von submukosalen Blutgefäßen ohne präemptive Koagulation. Ziele Die Forschungsfrage, ob ein KI-Algorithmus die intraprozedurale Gefäßerkennung bei ESD und POEM unterstützen und damit Komplikationen wie Blutungen verhindern könnte, erscheint in Anbetracht des erfolgreichen Einsatzes von KI bei der Erkennung von Kolonpolypen interessant. Methoden  Auf 5470 Einzelbildern von 59 third space Endoscopievideos wurden submukosale Blutgefäße annotiert. Zusammen mit weiteren 179.681 nicht-annotierten Bildern wurde ein DeepLabv3+neuronales Netzwerk mit dem ECMT-Verfahren für semi-supervised learning trainiert, um Blutgefäße in Echtzeit erkennen zu können. Für die Evaluation wurde ein Videotest mit 101 Videoclips aus 15 vom Trainingsdatensatz separaten Prozeduren mit 200 vordefinierten Gefäßen erstellt. Die Gefäßdetektionsrate, -zeit und -dauer, definiert als der Prozentsatz an Einzelbildern eines Videos bezogen auf den Goldstandard, auf denen ein definiertes Gefäß erkannt wurde, wurden erhoben. Acht erfahrene Endoskopiker wurden mithilfe dieses Videotests im Hinblick auf Gefäßdetektion getestet, wobei eine Hälfte der Videos nativ, die andere Hälfte nach Markierung durch den KI-Algorithmus angesehen wurde. Ergebnisse  Der mittlere Dice Score des Algorithmus für Blutgefäße war 68%. Die mittlere Gefäßdetektionsrate im Videotest lag bei 94% (96% für ESD; 74% für POEM). Die mediane Gefäßdetektionszeit des Algorithmus lag bei 0,32 Sekunden (0,3 Sekunden für ESD; 0,62 Sekunden für POEM). Die mittlere Gefäßdetektionsdauer lag bei 59,1% (60,6% für ESD; 44,8% für POEM) des Goldstandards. Alle Endoskopiker hatten mit KI-Unterstützung eine höhere Gefäßdetektionsrate als ohne KI. Die mittlere Gefäßdetektionsrate ohne KI lag bei 56,4%, mit KI bei 71,2% (p<0.001). Schlussfolgerung  KI-Unterstützung war mit einer statistisch signifikant höheren Gefäßdetektionsrate vergesellschaftet. Die mediane Gefäßdetektionszeit von deutlich unter einer Sekunde sowie eine Gefäßdetektionsdauer von größer 50% des Goldstandards wurden für den klinischen Einsatz als ausreichend erachtet. In prospektiven Anwendungsstudien sollte der KI-Algorithmus auf klinische Relevanz getestet werden. KW - Künstliche Intelligenz Y1 - 2023 U6 - https://doi.org/10.1055/s-0043-1771980 VL - 61 IS - 08 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Probst, Andreas A1 - Scheppach, Markus W. A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Ebigbo, Alanna T1 - Barrett-Ampel T2 - Zeitschrift für Gastroenterologie N2 - Hintergrund  Adenokarzinome des Ösophagus sind bis heute mit einer infausten Prognose vergesellschaftet (1). Obwohl Endoskopiker mit Barrett-Ösophagus als Präkanzerose konfrontiert werden, ist vor allem für nicht-Experten die Differenzierung zwischen Barrett-Ösophagus ohne Dysplasie und assoziierten Neoplasien mitunter schwierig. Existierende Biopsieprotokolle (z.B. Seattle Protokoll) sind oftmals unzuverlässig (2). Eine frühzeitige Diagnose des Adenokarzinoms ist allerdings von fundamentaler Bedeutung für die Prognose des Patienten. Forschungsansatz  Auf der Grundlage dieser Problematik, entwickelten wir in Kooperation mit dem Forschungslabor „Regensburg Medical Image Computing (ReMIC)“ der OTH Regensburg ein auf künstlicher Intelligenz (KI) basiertes Entscheidungsunterstützungssystem (CDSS). Das auf einer DeepLabv3+ neuronalen Netzwerkarchitektur basierende CDSS differenziert mittels Mustererkennung Barrett- Ösophagus ohne Dysplasie von Barrett-Ösophagus mit Dysplasie bzw. Neoplasie („Klassifizierung“). Hierbei werden gemittelte Ausgabewahrscheinlichkeiten mit einem vom Benutzer definierten Schwellenwert verglichen. Für Vorhersagen, die den Schwellenwert überschreiten, berechnen wir die Kontur der Region und die Fläche. Sobald die vorhergesagte Läsion eine bestimmte Größe in der Eingabe überschreitet, heben wir sie und ihren Umriss hervor. So ermöglicht eine farbkodierte Visualisierung eine Abgrenzung zwischen Dysplasie bzw. Neoplasie und normalem Barrett-Epithel („Segmentierung“). In einer Studie an Bildern in „Weißlicht“ (WL) und „Narrow Band Imaging“ (NBI) demonstrierten wir eine Sensitivität von mehr als 90% und eine Spezifität von mehr als 80% (3). In einem nächsten Schritt, differenzierte unser KI-Algorithmus Barrett- Metaplasien von assoziierten Neoplasien anhand von zufällig abgegriffenen Bildern in Echtzeit mit einer Accuracy von 89.9% (4). Darauf folgend, entwickelten wir unser System dahingehend weiter, dass unser Algorithmus nun auch dazu in der Lage ist, Untersuchungsvideos in WL, NBI und „Texture and Color Enhancement Imaging“ (TXI) in Echtzeit zu analysieren (5). Aktuell führen wir eine Studie in einem randomisiert-kontrollierten Ansatz an unveränderten Untersuchungsvideos in WL, NBI und TXI durch. Ausblick  Um Patienten mit aus Barrett-Metaplasien resultierenden Neoplasien frühestmöglich an „High-Volume“-Zentren überweisen zu können, soll unser KI-Algorithmus zukünftig vor allem Endoskopiker ohne extensive Erfahrung bei der Beurteilung von Barrett- Ösophagus in der Krebsfrüherkennung unterstützen. KW - Barrett-Ösophagus KW - Adenokarzinom KW - Künstliche Intelligenz KW - Speiseröhrenkrebs KW - Diagnose KW - Künstliche Intelligenz Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1755109 VL - 60 IS - 08 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - GEN A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Probst, Andreas A1 - Scheppach, Markus W. A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Ebigbo, Alanna T1 - Optical Flow als Methode zur Qualitätssicherung KI-unterstützter Untersuchungen von Barrett-Ösophagus und Barrett-Ösophagus assoziierten Neoplasien T2 - Zeitschrift für Gastroenterologie N2 - Einleitung  Übermäßige Bewegung im Bild kann die Performance von auf künstlicher Intelligenz (KI) basierenden klinischen Entscheidungsunterstützungssystemen (CDSS) reduzieren. Optical Flow (OF) ist eine Methode zur Lokalisierung und Quantifizierung von Bewegungen zwischen aufeinanderfolgenden Bildern. Ziel  Ziel ist es, die Mensch-Computer-Interaktion (HCI) zu verbessern und Endoskopiker die unser KI-System „Barrett-Ampel“ zur Unterstützung bei der Beurteilung von Barrett-Ösophagus (BE) verwenden, ein Echtzeit-Feedback zur aktuellen Datenqualität anzubieten. Methodik  Dazu wurden unveränderte Videos in „Weißlicht“ (WL), „Narrow Band Imaging“ (NBI) und „Texture and Color Enhancement Imaging“ (TXI) von acht endoskopischen Untersuchungen von histologisch gesichertem BE und mit Barrett-Ösophagus assoziierten Neoplasien (BERN) durch unseren KI-Algorithmus analysiert. Der zur Bewertung der Bildqualität verwendete OF beinhaltete die mittlere Magnitude und die Entropie des Histogramms der Winkel. Frames wurden automatisch extrahiert, wenn die vordefinierten Schwellenwerte von 3,0 für die mittlere Magnitude und 9,0 für die Entropie des Histogramms der Winkel überschritten wurden. Experten sahen sich zunächst die Videos ohne KI-Unterstützung an und bewerteten, ob Störfaktoren die Sicherheit mit der eine Diagnose im vorliegenden Fall gestellt werden kann negativ beeinflussen. Anschließend überprüften sie die extrahierten Frames. Ergebnis  Gleichmäßige Bewegung in eine Richtung, wie etwa beim Vorschieben des Endoskops, spiegelte sich, bei insignifikant veränderter Entropie, in einer Erhöhung der Magnitude wider. Chaotische Bewegung, zum Beispiel während dem Spülen, war mit erhöhter Entropie assoziiert. Insgesamt war eine unruhige endoskopische Darstellung, Flüssigkeit sowie übermäßige Ösophagusmotilität mit erhöhtem OF assoziiert und korrelierte mit der Meinung der Experten über die Qualität der Videos. Der OF und die subjektive Wahrnehmung der Experten über die Verwertbarkeit der vorliegenden Bildsequenzen korrelierten direkt proportional. Wenn die vordefinierten Schwellenwerte des OF überschritten wurden, war die damit verbundene Bildqualität in 94% der Fälle für eine definitive Interpretation auch für Experten unzureichend. Schlussfolgerung  OF hat das Potenzial Endoskopiker ein Echtzeit-Feedback über die Qualität des Dateninputs zu bieten und so nicht nur die HCI zu verbessern, sondern auch die optimale Performance von KI-Algorithmen zu ermöglichen. KW - Optical Flow Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1754997 VL - 60 IS - 08 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - GEN A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Probst, Andreas A1 - Scheppach, Markus W. A1 - Schnoy, Elisabeth A1 - Nagl, Sandra A1 - Römmele, Christoph A1 - Prinz, Friederike A1 - Schlottmann, Jakob A1 - Golger, Daniela A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - AI-assisted detection and characterization of early Barrett's neoplasia: Results of an Interim analysis T2 - Endoscopy N2 - Aims  Evaluation of the add-on effect an artificial intelligence (AI) based clinical decision support system has on the performance of endoscopists with different degrees of expertise in the field of Barrett's esophagus (BE) and Barrett's esophagus-related neoplasia (BERN). Methods  The support system is based on a multi-task deep learning model trained to solve a segmentation and several classification tasks. The training approach represents an extension of the ECMT semi-supervised learning algorithm. The complete system evaluates a decision tree between estimated motion, classification, segmentation, and temporal constraints, to decide when and how the prediction is highlighted to the observer. In our current study, ninety-six video cases of patients with BE and BERN were prospectively collected and assessed by Barrett's specialists and non-specialists. All video cases were evaluated twice – with and without AI assistance. The order of appearance, either with or without AI support, was assigned randomly. Participants were asked to detect and characterize regions of dysplasia or early neoplasia within the video sequences. Results  Standalone sensitivity, specificity, and accuracy of the AI system were 92.16%, 68.89%, and 81.25%, respectively. Mean sensitivity, specificity, and accuracy of expert endoscopists without AI support were 83,33%, 58,20%, and 71,48 %, respectively. Gastroenterologists without Barrett's expertise but with AI support had a comparable performance with a mean sensitivity, specificity, and accuracy of 76,63%, 65,35%, and 71,36%, respectively. Conclusions  Non-Barrett's experts with AI support had a similar performance as experts in a video-based study. Y1 - 2023 U6 - https://doi.org/10.1055/s-0043-1765437 VL - 55 IS - S02 PB - Thieme ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Rauber, David A1 - Rueckert, Tobias A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Real-time detection and delineation of tissue during third-space endoscopy using artificial intelligence (AI) T2 - Endoscopy N2 - Aims  AI has proven great potential in assisting endoscopists in diagnostics, however its role in therapeutic endoscopy remains unclear. Endoscopic submucosal dissection (ESD) is a technically demanding intervention with a slow learning curve and relevant risks like bleeding and perforation. Therefore, we aimed to develop an algorithm for the real-time detection and delineation of relevant structures during third-space endoscopy. Methods  5470 still images from 59 full length videos (47 ESD, 12 POEM) were annotated. 179681 additional unlabeled images were added to the training dataset. Consequently, a DeepLabv3+ neural network architecture was trained with the ECMT semi-supervised algorithm (under review elsewhere). Evaluation of vessel detection was performed on a dataset of 101 standardized video clips from 15 separate third-space endoscopy videos with 200 predefined blood vessels. Results  Internal validation yielded an overall mean Dice score of 85% (68% for blood vessels, 86% for submucosal layer, 88% for muscle layer). On the video test data, the overall vessel detection rate (VDR) was 94% (96% for ESD, 74% for POEM). The median overall vessel detection time (VDT) was 0.32 sec (0.3 sec for ESD, 0.62 sec for POEM). Conclusions  Evaluation of the developed algorithm on a video test dataset showed high VDR and quick VDT, especially for ESD. Further research will focus on a possible clinical benefit of the AI application for VDR and VDT during third-space endoscopy. KW - Speiseröhrenkrankheit KW - Künstliche Intelligenz KW - Artificial Intelligence Y1 - 2023 U6 - https://doi.org/10.1055/s-0043-1765128 VL - 55 IS - S02 SP - S53 EP - S54 PB - Thieme ER - TY - GEN A1 - Scheppach, Markus W. A1 - Weber Nunes, Danilo A1 - Arizi, X. A1 - Rauber, David A1 - Probst, Andreas A1 - Nagl, Sandra A1 - Römmele, Christoph A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Procedural phase recognition in endoscopic submucosal dissection (ESD) using artificial intelligence (AI) T2 - Endoscopy N2 - Aims Recent evidence suggests the possibility of intraprocedural phase recognition in surgical operations as well as endoscopic interventions such as peroral endoscopic myotomy and endoscopic submucosal dissection (ESD) by AI-algorithms. The intricate measurement of intraprocedural phase distribution may deepen the understanding of the procedure. Furthermore, real-time quality assessment as well as automation of reporting may become possible. Therefore, we aimed to develop an AI-algorithm for intraprocedural phase recognition during ESD. Methods A training dataset of 364385 single images from 9 full-length ESD videos was compiled. Each frame was classified into one procedural phase. Phases included scope manipulation, marking, injection, application of electrical current and bleeding. Allocation of each frame was only possible to one category. This training dataset was used to train a Video Swin transformer to recognize the phases. Temporal information was included via logarithmic frame sampling. Validation was performed using two separate ESD videos with 29801 single frames. Results The validation yielded sensitivities of 97.81%, 97.83%, 95.53%, 85.01% and 87.55% for scope manipulation, marking, injection, electric application and bleeding, respectively. Specificities of 77.78%, 90.91%, 95.91%, 93.65% and 84.76% were measured for the same parameters. Conclusions The developed algorithm was able to classify full-length ESD videos on a frame-by-frame basis into the predefined classes with high sensitivities and specificities. Future research will aim at the development of quality metrics based on single-operator phase distribution. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1783804 VL - 56 IS - S 02 SP - S439 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Souza Jr., Luis Antonio de A1 - Passos, Leandro A. A1 - Santana, Marcos Cleison S. A1 - Mendel, Robert A1 - Rauber, David A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Papa, João Paulo A1 - Palm, Christoph T1 - Layer-selective deep representation to improve esophageal cancer classification JF - Medical & Biological Engineering & Computing N2 - Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their accountability and transparency level must be improved to transfer this success into clinical practice. The reliability of machine learning decisions must be explained and interpreted, especially for supporting the medical diagnosis.For this task, the deep learning techniques’ black-box nature must somehow be lightened up to clarify its promising results. Hence, we aim to investigate the impact of the ResNet-50 deep convolutional design for Barrett’s esophagus and adenocarcinoma classification. For such a task, and aiming at proposing a two-step learning technique, the output of each convolutional layer that composes the ResNet-50 architecture was trained and classified for further definition of layers that would provide more impact in the architecture. We showed that local information and high-dimensional features are essential to improve the classification for our task. Besides, we observed a significant improvement when the most discriminative layers expressed more impact in the training and classification of ResNet-50 for Barrett’s esophagus and adenocarcinoma classification, demonstrating that both human knowledge and computational processing may influence the correct learning of such a problem. KW - Multistep training KW - Barrett’s esophagus detection KW - Convolutional neural networks KW - Deep learning Y1 - 2024 U6 - https://doi.org/10.1007/s11517-024-03142-8 PB - Springer Nature CY - Heidelberg ER - TY - GEN A1 - Ebigbo, Alanna A1 - Rauber, David A1 - Ayoub, Mousa A1 - Birzle, Lisa A1 - Matsumura, Tomoaki A1 - Probst, Andreas A1 - Steinbrück, Ingo A1 - Nagl, Sandra A1 - Römmele, Christoph A1 - Meinikheim, Michael A1 - Scheppach, Markus W. A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Early Esophageal Cancer and the Generalizability of Artificial Intelligence T2 - Endoscopy N2 - Aims Artificial Intelligence (AI) systems in gastrointestinal endoscopy are narrow because they are trained to solve only one specific task. Unlike Narrow-AI, general AI systems may be able to solve multiple and unrelated tasks. We aimed to understand whether an AI system trained to detect, characterize, and segment early Barrett’s neoplasia (Barrett’s AI) is only capable of detecting this pathology or can also detect and segment other diseases like early squamous cell cancer (SCC). Methods 120 white light (WL) and narrow-band endoscopic images (NBI) from 60 patients (1 WL and 1 NBI image per patient) were extracted from the endoscopic database of the University Hospital Augsburg. Images were annotated by three expert endoscopists with extensive experience in the diagnosis and endoscopic resection of early esophageal neoplasias. An AI system based on DeepLabV3+architecture dedicated to early Barrett’s neoplasia was tested on these images. The AI system was neither trained with SCC images nor had it seen the test images prior to evaluation. The overlap between the three expert annotations („expert-agreement“) was the ground truth for evaluating AI performance. Results Barrett’s AI detected early SCC with a mean intersection over reference (IoR) of 92% when at least 1 pixel of the AI prediction overlapped with the expert-agreement. When the threshold was increased to 5%, 10%, and 20% overlap with the expert-agreement, the IoR was 88%, 85% and 82%, respectively. The mean Intersection Over Union (IoU) – a metric according to segmentation quality between the AI prediction and the expert-agreement – was 0.45. The mean expert IoU as a measure of agreement between the three experts was 0.60. Conclusions In the context of this pilot study, the predictions of SCC by a Barrett’s dedicated AI showed some overlap to the expert-agreement. Therefore, features learned from Barrett’s cancer-related training might be helpful also for SCC prediction. Our results allow different possible explanations. On the one hand, some Barrett’s cancer features generalize toward the related task of assessing early SCC. On the other hand, the Barrett’s AI is less specific to Barrett’s cancer than a general predictor of pathological tissue. However, we expect to enhance the detection quality significantly by extending the training to SCC-specific data. The insight of this study opens the way towards a transfer learning approach for more efficient training of AI to solve tasks in other domains. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1783775 VL - 56 IS - S 02 SP - S428 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Rauber, David A1 - Probst, Andreas A1 - Nagl, Sandra A1 - Römmele, Christoph A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Artificial Intelligence (AI) improves endoscopists’ vessel detection during endoscopic submucosal dissection (ESD) T2 - Endoscopy N2 - Aims While AI has been successfully implemented in detecting and characterizing colonic polyps, its role in therapeutic endoscopy remains to be elucidated. Especially third space endoscopy procedures like ESD and peroral endoscopic myotomy (POEM) pose a technical challenge and the risk of operator-dependent complications like intraprocedural bleeding and perforation. Therefore, we aimed at developing an AI-algorithm for intraprocedural real time vessel detection during ESD and POEM. Methods A training dataset consisting of 5470 annotated still images from 59 full-length videos (47 ESD, 12 POEM) and 179681 unlabeled images was used to train a DeepLabV3+neural network with the ECMT semi-supervised learning method. Evaluation for vessel detection rate (VDR) and time (VDT) of 19 endoscopists with and without AI-support was performed using a testing dataset of 101 standardized video clips with 200 predefined blood vessels. Endoscopists were stratified into trainees and experts in third space endoscopy. Results The AI algorithm had a mean VDR of 93.5% and a median VDT of 0.32 seconds. AI support was associated with a statistically significant increase in VDR from 54.9% to 73.0% and from 59.0% to 74.1% for trainees and experts, respectively. VDT significantly decreased from 7.21 sec to 5.09 sec for trainees and from 6.10 sec to 5.38 sec for experts in the AI-support group. False positive (FP) readings occurred in 4.5% of frames. FP structures were detected significantly shorter than true positives (0.71 sec vs. 5.99 sec). Conclusions AI improved VDR and VDT of trainees and experts in third space endoscopy and may reduce performance variability during training. Further research is needed to evaluate the clinical impact of this new technology. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1782891 VL - 56 IS - S 02 SP - S93 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Zellmer, Stephan A1 - Rauber, David A1 - Probst, Andreas A1 - Weber, Tobias A1 - Braun, Georg A1 - Römmele, Christoph A1 - Nagl, Sandra A1 - Schnoy, Elisabeth A1 - Messmann, Helmut A1 - Ebigbo, Alanna A1 - Palm, Christoph T1 - Artificial intelligence as a tool in the detection of the papillary ostium during ERCP T2 - Endoscopy N2 - Aims Endoscopic retrograde cholangiopancreaticography (ERCP) is the gold standard in the diagnosis as well as treatment of diseases of the pancreatobiliary tract. However, it is technically complex and has a relatively high complication rate. In particular, cannulation of the papillary ostium remains challenging. The aim of this study is to examine whether a deep-learning algorithm can be used to detect the major duodenal papilla and in particular the papillary ostium reliably and could therefore be a valuable tool for inexperienced endoscopists, particularly in training situation. Methods We analyzed a total of 654 retrospectively collected images of 85 patients. Both the major duodenal papilla and the ostium were then segmented. Afterwards, a neural network was trained using a deep-learning algorithm. A 5-fold cross-validation was performed. Subsequently, we ran the algorithm on 5 prospectively collected videos of ERCPs. Results 5-fold cross-validation on the 654 labeled data resulted in an F1 value of 0.8007, a sensitivity of 0.8409 and a specificity of 0.9757 for the class papilla, and an F1 value of 0.5724, a sensitivity of 0.5456 and a specificity of 0.9966 for the class ostium. Regardless of the class, the average F1 value (class papilla and class ostium) was 0.6866, the sensitivity 0.6933 and the specificity 0.9861. In 100% of cases the AI-detected localization of the papillary ostium in the prospectively collected videos corresponded to the localization of the cannulation performed by the endoscopist. Conclusions In the present study, the neural network was able to identify the major duodenal papilla with a high sensitivity and high specificity. In detecting the papillary ostium, the sensitivity was notably lower. However, when used on videos, the AI was able to identify the location of the subsequent cannulation with 100% accuracy. In the future, the neural network will be trained with more data. Thus, a suitable tool for ERCP could be established, especially in the training situation. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1783138 VL - 56 IS - S 02 SP - S198 PB - Thieme CY - Stuttgart ER - TY - CHAP A1 - Souza Jr., Luis Antonio de A1 - Passos, Leandro A. A1 - Mendel, Robert A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Papa, João Paulo T1 - Fine-tuning Generative Adversarial Networks using Metaheuristics BT - A Case Study on Barrett's Esophagus Identification T2 - Bildverarbeitung für die Medizin 2021. Proceedings, German Workshop on Medical Image Computing, Regensburg, March 7-9, 2021 N2 - Barrett's esophagus denotes a disorder in the digestive system that affects the esophagus' mucosal cells, causing reflux, and showing potential convergence to esophageal adenocarcinoma if not treated in initial stages. Thus, fast and reliable computer-aided diagnosis becomes considerably welcome. Nevertheless, such approaches usually suffer from imbalanced datasets, which can be addressed through Generative Adversarial Networks (GANs). Such techniques generate realistic images based on observed samples, even though at the cost of a proper selection of its hyperparameters. Many works employed a class of nature-inspired algorithms called metaheuristics to tackle the problem considering distinct deep learning approaches. Therefore, this paper's main contribution is to introduce metaheuristic techniques to fine-tune GANs in the context of Barrett's esophagus identification, as well as to investigate the feasibility of generating high-quality synthetic images for early-cancer assisted identification. KW - Endoskopie KW - Computerunterstützte Medizin KW - Deep Learning Y1 - 2021 SN - 978-3-658-33197-9 U6 - https://doi.org/10.1007/978-3-658-33198-6_50 SP - 205 EP - 210 PB - Springer Vieweg CY - Wiesbaden ER - TY - GEN A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Probst, Andreas A1 - Manzeneder, Johannes A1 - Souza Jr., Luis Antonio de A1 - Papa, João Paulo A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Artificial Intelligence in Early Barrett's Cancer: The Segmentation Task T2 - Endoscopy N2 - Aims: The delineation of outer margins of early Barrett's cancer can be challenging even for experienced endoscopists. Artificial intelligence (AI) could assist endoscopists faced with this task. As of date, there is very limited experience in this domain. In this study, we demonstrate the measure of overlap (Dice coefficient = D) between highly experienced Barrett endoscopists and an AI system in the delineation of cancer margins (segmentation task). Methods: An AI system with a deep convolutional neural network (CNN) was trained and tested on high-definition endoscopic images of early Barrett's cancer (n = 33) and normal Barrett's mucosa (n = 41). The reference standard for the segmentation task were the manual delineations of tumor margins by three highly experienced Barrett endoscopists. Training of the AI system included patch generation, patch augmentation and adjustment of the CNN weights. Then, the segmentation results from patch classification and thresholding of the class probabilities. Segmentation results were evaluated using the Dice coefficient (D). Results: The Dice coefficient (D) which can range between 0 (no overlap) and 1 (complete overlap) was computed only for images correctly classified by the AI-system as cancerous. At a threshold of t = 0.5, a mean value of D = 0.72 was computed. Conclusions: AI with CNN performed reasonably well in the segmentation of the tumor region in Barrett's cancer, at least when compared with expert Barrett's endoscopists. AI holds a lot of promise as a tool for better visualization of tumor margins but may need further improvement and enhancement especially in real-time settings. KW - Speiseröhrenkrankheit KW - Maschinelles Lernen KW - Barrett's esphagus KW - Deep Learning KW - Segmentation Y1 - 2019 U6 - https://doi.org/10.1055/s-0039-1681187 VL - 51 IS - 04 SP - 6 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Palm, Christoph A1 - Probst, Andreas A1 - Mendel, Robert A1 - Manzeneder, Johannes A1 - Prinz, Friederike A1 - Souza Jr., Luis Antonio de A1 - Papa, João Paulo A1 - Siersema, Peter A1 - Messmann, Helmut T1 - A technical review of artificial intelligence as applied to gastrointestinal endoscopy: clarifying the terminology JF - Endoscopy International Open N2 - The growing number of publications on the application of artificial intelligence (AI) in medicine underlines the enormous importance and potential of this emerging field of research. In gastrointestinal endoscopy, AI has been applied to all segments of the gastrointestinal tract most importantly in the detection and characterization of colorectal polyps. However, AI research has been published also in the stomach and esophagus for both neoplastic and non-neoplastic disorders. The various technical as well as medical aspects of AI, however, remain confusing especially for non-expert physicians. This physician-engineer co-authored review explains the basic technical aspects of AI and provides a comprehensive overview of recent publications on AI in gastrointestinal endoscopy. Finally, a basic insight is offered into understanding publications on AI in gastrointestinal endoscopy. KW - Diagnose KW - Maschinelles Lernen KW - Gastroenterologie KW - Künstliche Intelligenz KW - Barrett's esophagus KW - Deep learning Y1 - 2019 U6 - https://doi.org/10.1055/a-1010-5705 VL - 07 IS - 12 SP - 1616 EP - 1623 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Probst, Andreas A1 - Manzeneder, Johannes A1 - Prinz, Friederike A1 - Souza Jr., Luis Antonio de A1 - Papa, João Paulo A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Real-time use of artificial intelligence in the evaluation of cancer in Barrett’s oesophagus JF - Gut N2 - Based on previous work by our group with manual annotation of visible Barrett oesophagus (BE) cancer images, a real-time deep learning artificial intelligence (AI) system was developed. While an expert endoscopist conducts the endoscopic assessment of BE, our AI system captures random images from the real-time camera livestream and provides a global prediction (classification), as well as a dense prediction (segmentation) differentiating accurately between normal BE and early oesophageal adenocarcinoma (EAC). The AI system showed an accuracy of 89.9% on 14 cases with neoplastic BE. KW - Speiseröhrenkrankheit KW - Diagnose KW - Maschinelles Lernen KW - Barrett's esophagus KW - Deep learning KW - real-time Y1 - 2020 U6 - https://doi.org/10.1136/gutjnl-2019-319460 VL - 69 IS - 4 SP - 615 EP - 616 PB - BMJ CY - London ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Rückert, Tobias A1 - Schuster, Laurin A1 - Probst, Andreas A1 - Manzeneder, Johannes A1 - Prinz, Friederike A1 - Mende, Matthias A1 - Steinbrück, Ingo A1 - Faiss, Siegbert A1 - Rauber, David A1 - Souza Jr., Luis Antonio de A1 - Papa, João Paulo A1 - Deprez, Pierre A1 - Oyama, Tsuneo A1 - Takahashi, Akiko A1 - Seewald, Stefan A1 - Sharma, Prateek A1 - Byrne, Michael F. A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Endoscopic prediction of submucosal invasion in Barrett’s cancer with the use of Artificial Intelligence: A pilot Study JF - Endoscopy N2 - Background and aims: The accurate differentiation between T1a and T1b Barrett’s cancer has both therapeutic and prognostic implications but is challenging even for experienced physicians. We trained an Artificial Intelligence (AI) system on the basis of deep artificial neural networks (deep learning) to differentiate between T1a and T1b Barrett’s cancer white-light images. Methods: Endoscopic images from three tertiary care centres in Germany were collected retrospectively. A deep learning system was trained and tested using the principles of cross-validation. A total of 230 white-light endoscopic images (108 T1a and 122 T1b) was evaluated with the AI-system. For comparison, the images were also classified by experts specialized in endoscopic diagnosis and treatment of Barrett’s cancer. Results: The sensitivity, specificity, F1 and accuracy of the AI-system in the differentiation between T1a and T1b cancer lesions was 0.77, 0.64, 0.73 and 0.71, respectively. There was no statistically significant difference between the performance of the AI-system and that of human experts with sensitivity, specificity, F1 and accuracy of 0.63, 0.78, 0.67 and 0.70 respectively. Conclusion: This pilot study demonstrates the first multicenter application of an AI-based system in the prediction of submucosal invasion in endoscopic images of Barrett’s cancer. AI scored equal to international experts in the field, but more work is necessary to improve the system and apply it to video sequences and in a real-life setting. Nevertheless, the correct prediction of submucosal invasion in Barret´s cancer remains challenging for both experts and AI. KW - Maschinelles Lernen KW - Neuronales Netz KW - Speiseröhrenkrebs KW - Diagnose KW - Artificial Intelligence KW - Machine learning KW - Adenocarcinoma KW - Barrett’s cancer KW - submucosal invasion Y1 - 2021 U6 - https://doi.org/10.1055/a-1311-8570 VL - 53 IS - 09 SP - 878 EP - 883 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Souza Jr., Luis Antonio de A1 - Pacheco, André G.C. A1 - Passos, Leandro A. A1 - Santana, Marcos C. S. A1 - Mendel, Robert A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Papa, João Paulo T1 - DeepCraftFuse: visual and deeply-learnable features work better together for esophageal cancer detection in patients with Barrett’s esophagus JF - Neural Computing and Applications N2 - Limitations in computer-assisted diagnosis include lack of labeled data and inability to model the relation between what experts see and what computers learn. Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their accountability and transparency level must be improved to transfer this success into clinical practice. The reliability of machine learning decisions must be explained and interpreted, especially for supporting the medical diagnosis. While deep learning techniques are broad so that unseen information might help learn patterns of interest, human insights to describe objects of interest help in decision-making. This paper proposes a novel approach, DeepCraftFuse, to address the challenge of combining information provided by deep networks with visual-based features to significantly enhance the correct identification of cancerous tissues in patients affected with Barrett’s esophagus (BE). We demonstrate that DeepCraftFuse outperforms state-of-the-art techniques on private and public datasets, reaching results of around 95% when distinguishing patients affected by BE that is either positive or negative to esophageal cancer. KW - Deep Learning KW - Speiseröhrenkrebs KW - Adenocarcinom KW - Endobrachyösophagus KW - Diagnose KW - Maschinelles Lernen KW - Machine learning KW - Adenocarcinoma KW - Object detector KW - Barrett’s esophagus KW - Deep Learning Y1 - 2024 U6 - https://doi.org/10.1007/s00521-024-09615-z VL - 36 SP - 10445 EP - 10459 PB - Springer CY - London ER - TY - JOUR A1 - Souza Jr., Luis Antonio de A1 - Palm, Christoph A1 - Mendel, Robert A1 - Hook, Christian A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Weber, Silke A. T. A1 - Papa, João Paulo T1 - A survey on Barrett's esophagus analysis using machine learning JF - Computers in Biology and Medicine N2 - This work presents a systematic review concerning recent studies and technologies of machine learning for Barrett's esophagus (BE) diagnosis and treatment. The use of artificial intelligence is a brand new and promising way to evaluate such disease. We compile some works published at some well-established databases, such as Science Direct, IEEEXplore, PubMed, Plos One, Multidisciplinary Digital Publishing Institute (MDPI), Association for Computing Machinery (ACM), Springer, and Hindawi Publishing Corporation. Each selected work has been analyzed to present its objective, methodology, and results. The BE progression to dysplasia or adenocarcinoma shows a complex pattern to be detected during endoscopic surveillance. Therefore, it is valuable to assist its diagnosis and automatic identification using computer analysis. The evaluation of the BE dysplasia can be performed through manual or automated segmentation through machine learning techniques. Finally, in this survey, we reviewed recent studies focused on the automatic detection of the neoplastic region for classification purposes using machine learning methods. KW - Speiseröhrenkrankheit KW - Diagnose KW - Mustererkennung KW - Maschinelles Lernen KW - Literaturbericht KW - Barrett's esophagus KW - Machine learning KW - Adenocarcinoma KW - Image processing KW - Pattern recognition KW - Computer-aided diagnosis Y1 - 2018 U6 - https://doi.org/10.1016/j.compbiomed.2018.03.014 VL - 96 SP - 203 EP - 213 PB - Elsevier ER - TY - JOUR A1 - Passos, Leandro A. A1 - Souza Jr., Luis Antonio de A1 - Mendel, Robert A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Papa, João Paulo T1 - Barrett's esophagus analysis using infinity Restricted Boltzmann Machines JF - Journal of Visual Communication and Image Representation N2 - The number of patients with Barret’s esophagus (BE) has increased in the last decades. Considering the dangerousness of the disease and its evolution to adenocarcinoma, an early diagnosis of BE may provide a high probability of cancer remission. However, limitations regarding traditional methods of detection and management of BE demand alternative solutions. As such, computer-aided tools have been recently used to assist in this problem, but the challenge still persists. To manage the problem, we introduce the infinity Restricted Boltzmann Machines (iRBMs) to the task of automatic identification of Barrett’s esophagus from endoscopic images of the lower esophagus. Moreover, since iRBM requires a proper selection of its meta-parameters, we also present a discriminative iRBM fine-tuning using six meta-heuristic optimization techniques. We showed that iRBMs are suitable for the context since it provides competitive results, as well as the meta-heuristic techniques showed to be appropriate for such task. KW - Speiseröhrenkrankheit KW - Diagnose KW - Boltzmann-Maschine KW - Barrett’s esophagus KW - Infinity Restricted Boltzmann Machines KW - Meta-heuristics KW - Deep learning KW - Metaheuristik KW - Maschinelles Lernen Y1 - 2019 U6 - https://doi.org/10.1016/j.jvcir.2019.01.043 VL - 59 SP - 475 EP - 485 PB - Elsevier ER - TY - CHAP A1 - Souza Jr., Luis Antonio de A1 - Hook, Christian A1 - Papa, João Paulo A1 - Palm, Christoph T1 - Barrett's Esophagus Analysis Using SURF Features T2 - Bildverarbeitung für die Medizin 2017; Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 12. bis 14. März 2017 in Heidelberg N2 - The development of adenocarcinoma in Barrett’s esophagus is difficult to detect by endoscopic surveillance of patients with signs of dysplasia. Computer assisted diagnosis of endoscopic images (CAD) could therefore be most helpful in the demarcation and classification of neoplastic lesions. In this study we tested the feasibility of a CAD method based on Speeded up Robust Feature Detection (SURF). A given database containing 100 images from 39 patients served as benchmark for feature based classification models. Half of the images had previously been diagnosed by five clinical experts as being ”cancerous”, the other half as ”non-cancerous”. Cancerous image regions had been visibly delineated (masked) by the clinicians. SURF features acquired from full images as well as from masked areas were utilized for the supervised training and testing of an SVM classifier. The predictive accuracy of the developed CAD system is illustrated by sensitivity and specificity values. The results based on full image matching where 0.78 (sensitivity) and 0.82 (specificity) were achieved, while the masked region approach generated results of 0.90 and 0.95, respectively. KW - Speiseröhrenkrankheit KW - Diagnose KW - Maschinelles Sehen KW - Automatische Klassifikation Y1 - 2017 U6 - https://doi.org/10.1007/978-3-662-54345-0_34 SP - 141 EP - 146 PB - Springer CY - Berlin ER - TY - CHAP A1 - Mendel, Robert A1 - Souza Jr., Luis Antonio de A1 - Rauber, David A1 - Papa, João Paulo A1 - Palm, Christoph T1 - Semi-supervised Segmentation Based on Error-Correcting Supervision T2 - Computer vision - ECCV 2020: 16th European conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XXIX N2 - Pixel-level classification is an essential part of computer vision. For learning from labeled data, many powerful deep learning models have been developed recently. In this work, we augment such supervised segmentation models by allowing them to learn from unlabeled data. Our semi-supervised approach, termed Error-Correcting Supervision, leverages a collaborative strategy. Apart from the supervised training on the labeled data, the segmentation network is judged by an additional network. The secondary correction network learns on the labeled data to optimally spot correct predictions, as well as to amend incorrect ones. As auxiliary regularization term, the corrector directly influences the supervised training of the segmentation network. On unlabeled data, the output of the correction network is essential to create a proxy for the unknown truth. The corrector’s output is combined with the segmentation network’s prediction to form the new target. We propose a loss function that incorporates both the pseudo-labels as well as the predictive certainty of the correction network. Our approach can easily be added to supervised segmentation models. We show consistent improvements over a supervised baseline on experiments on both the Pascal VOC 2012 and the Cityscapes datasets with varying amounts of labeled data. KW - Semi-Supervised Learning KW - Machine Learning Y1 - 2020 SN - 978-3-030-58525-9 U6 - https://doi.org/10.1007/978-3-030-58526-6_9 SP - 141 EP - 157 PB - Springer CY - Cham ER - TY - CHAP A1 - Souza Jr., Luis Antonio de A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Papa, João Paulo A1 - Mendel, Robert A1 - Palm, Christoph T1 - Barrett's Esophagus Identification Using Color Co-occurrence Matrices T2 - 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Parana, 2018 N2 - In this work, we propose the use of single channel Color Co-occurrence Matrices for texture description of Barrett’sEsophagus (BE)and adenocarcinoma images. Further classification using supervised learning techniques, such as Optimum-Path Forest (OPF), Support Vector Machines with Radial Basisunction (SVM-RBF) and Bayesian classifier supports the contextof automatic BE and adenocarcinoma diagnosis. We validated three approaches of classification based on patches, patients and images in two datasets (MICCAI 2015 and Augsburg) using the color-and-texture descriptors and the machine learning techniques. Concerning MICCAI 2015 dataset, the best results were obtained using the blue channel for the descriptors and the supervised OPF for classification purposes in the patch-based approach, with sensitivity nearly to 73% for positive adenocarcinoma identification and specificity close to 77% for BE (non-cancerous) patch classification. Regarding the Augsburg dataset, the most accurate results were also obtained using both OPF classifier and blue channel descriptor for the feature extraction, with sensitivity close to 67% and specificity around to76%. Our work highlights new advances in the related research area and provides a promising technique that combines color and texture information, allied to three different approaches of dataset pre-processing aiming to configure robust scenarios for the classification step. KW - Barrett’s Esophagus KW - Co-occurrence Matrices KW - Machine learning KW - Texture Analysis Y1 - 2018 U6 - https://doi.org/10.1109/SIBGRAPI.2018.00028 SP - 166 EP - 173 ER - TY - CHAP A1 - Souza Jr., Luis Antonio de A1 - Afonso, Luis Claudio Sugi A1 - Palm, Christoph A1 - Papa, João Paulo T1 - Barrett's Esophagus Identification Using Optimum-Path Forest T2 - Proceedings of the 30th Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T 2017), Niterói, Rio de Janeiro, Brazil, 2017, 17-20 October N2 - Computer-assisted analysis of endoscopic images can be helpful to the automatic diagnosis and classification of neoplastic lesions. Barrett's esophagus (BE) is a common type of reflux that is not straight forward to be detected by endoscopic surveillance, thus being way susceptible to erroneous diagnosis, which can cause cancer when not treated properly. In this work, we introduce the Optimum-Path Forest (OPF) classifier to the task of automatic identification of Barrett'sesophagus, with promising results and outperforming the well known Support Vector Machines (SVM) in the aforementioned context. We consider describing endoscopic images by means of feature extractors based on key point information, such as the Speeded up Robust Features (SURF) and Scale-Invariant Feature Transform (SIFT), for further designing a bag-of-visual-wordsthat is used to feed both OPF and SVM classifiers. The best results were obtained by means of the OPF classifier for both feature extractors, with values lying on 0.732 (SURF) - 0.735(SIFT) for sensitivity, 0.782 (SURF) - 0.806 (SIFT) for specificity, and 0.738 (SURF) - 0.732 (SIFT) for the accuracy. KW - Speiseröhrenkrankheit KW - Diagnose KW - Maschinelles Lernen KW - Bilderkennung KW - Automatische Klassifikation Y1 - 2017 U6 - https://doi.org/10.1109/SIBGRAPI.2017.47 SP - 308 EP - 314 ER - TY - GEN A1 - Mendel, Robert A1 - Souza Jr., Luis Antonio de A1 - Rauber, David A1 - Papa, João Paulo A1 - Palm, Christoph T1 - Abstract: Semi-supervised Segmentation Based on Error-correcting Supervision T2 - Bildverarbeitung für die Medizin 2021. Proceedings, German Workshop on Medical Image Computing, Regensburg, March 7-9, 2021 N2 - Pixel-level classification is an essential part of computer vision. For learning from labeled data, many powerful deep learning models have been developed recently. In this work, we augment such supervised segmentation models by allowing them to learn from unlabeled data. Our semi-supervised approach, termed Error-Correcting Supervision, leverages a collaborative strategy. Apart from the supervised training on the labeled data, the segmentation network is judged by an additional network. KW - Deep Learning Y1 - 2021 SN - 978-3-658-33197-9 U6 - https://doi.org/10.1007/978-3-658-33198-6_43 SP - 178 PB - Springer Vieweg CY - Wiesbaden ER - TY - JOUR A1 - Souza Jr., Luis Antonio de A1 - Passos, Leandro A. A1 - Mendel, Robert A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Papa, João Paulo T1 - Assisting Barrett's esophagus identification using endoscopic data augmentation based on Generative Adversarial Networks JF - Computers in Biology and Medicine N2 - Barrett's esophagus figured a swift rise in the number of cases in the past years. Although traditional diagnosis methods offered a vital role in early-stage treatment, they are generally time- and resource-consuming. In this context, computer-aided approaches for automatic diagnosis emerged in the literature since early detection is intrinsically related to remission probabilities. However, they still suffer from drawbacks because of the lack of available data for machine learning purposes, thus implying reduced recognition rates. This work introduces Generative Adversarial Networks to generate high-quality endoscopic images, thereby identifying Barrett's esophagus and adenocarcinoma more precisely. Further, Convolution Neural Networks are used for feature extraction and classification purposes. The proposed approach is validated over two datasets of endoscopic images, with the experiments conducted over the full and patch-split images. The application of Deep Convolutional Generative Adversarial Networks for the data augmentation step and LeNet-5 and AlexNet for the classification step allowed us to validate the proposed methodology over an extensive set of datasets (based on original and augmented sets), reaching results of 90% of accuracy for the patch-based approach and 85% for the image-based approach. Both results are based on augmented datasets and are statistically different from the ones obtained in the original datasets of the same kind. Moreover, the impact of data augmentation was evaluated in the context of image description and classification, and the results obtained using synthetic images outperformed the ones over the original datasets, as well as other recent approaches from the literature. Such results suggest promising insights related to the importance of proper data for the accurate classification concerning computer-assisted Barrett's esophagus and adenocarcinoma detection. KW - Maschinelles Lernen KW - Barrett's esophagus KW - Machine learning KW - Adenocarcinoma KW - Generative adversarial networks KW - Neuronales Netz KW - Adenocarcinom KW - Speiseröhrenkrebs KW - Diagnose Y1 - 2020 U6 - https://doi.org/10.1016/j.compbiomed.2020.104029 VL - 126 IS - November PB - Elsevier ER -