TY - JOUR A1 - Prommesberger, Christian A1 - Langer, Christoph A1 - Ławrowski, Robert Damian A1 - Schreiner, Rupert T1 - Investigations on the long-term performance of gated p-type silicon tip arrays with reproducible and stable field emission behavior JF - Journal of Vacuum Science & Technology B N2 - The authors report on the fabrication and characterization of p-type Si tip arrays with an integrated gate electrode for applications as field emission electron sources. After the reactive ion etching of the emitters, the combined thermal dry and wet oxidation was used for both the sharpening of the emitters and for the realization of an enhanced insulation layer. Au was evaporated in a self-aligned process as gate electrode. Arrays of 16 Si tips were fabricated with tip heights of about 3 μm and tip radii of about 20 nm with integrated gate electrode concentrically positioned ≈2 μm below the tip apex. Integral measurements with an additional anode showed improved field emission properties with a reproducible and stable emission behavior. A fast activation of the tips, low onset voltages of about 30 V, and moderate field emission currents up to 0.55 μA were noticed. The field emission parameters were calculated using the Fowler–Nordheim characteristics. A pronounced saturation regime was observed, and current fluctuations of less than ±1% were investigated for 30 min. Long-term measurements were carried out for a period of more than 8 h. In the first 6 h of operation, the authors observed a drift of the emission current from 0.35 to 0.55 μA caused by an increased emission surface. Y1 - 2017 U6 - https://doi.org/10.1116/1.4972519 VL - 35 IS - 1 ER - TY - CHAP A1 - Ławrowski, Robert Damian A1 - Langer, Christoph A1 - Prommesberger, Christian A1 - Dams, Florian A1 - Bachmann, Michael A1 - Schreiner, Rupert T1 - Fabrication and simulation of silicon structures with high aspect ratio for field emission devices T2 - 2014 27th International Vacuum Nanoelectronics Conference (IVNC), 6-10 July 2014, Engelberg, Switzerland N2 - To obtain higher field enhancement factors of Si-tip structures, we present an improved fabrication process utilizing reactive-ion etching (RIE) with an inductively coupled plasma (ICP). In our design, a pillar under the tips is realized by a combination of RIE with ICP. With adjusted power settings (≈ 240 W) and step times (<; 5 s), vertical slopes with a low roughness of approximately 10 nm to 20 nm are possible. The remaining silicon is oxidized thermally to sharpen the emitters. A final tip radius of R <; 20 nm is obtained for the tips of the emitters. The pillar height HP can be mainly adjusted by the duration of the ICP-etching step. A total emitter height of H ≈ 6 μm with a pillar height of HP ≈ 5 μm is achieved. Simulations with COMSOL Multiphysics® are applied to calculate the field enhancement factor β. A two-dimensional model is used in rotational symmetry. In addition to the previous model, a pillar with a varying diameter ØP and height HP is added. A conventional emitter (H = 1 μm and R = 20 nm) placed on a pillar of the height HP ≈ 5 μm approximately results in a three times higher β-factor (β≈ 105). By decreasing the diameter ØP a slight increase of the β-factor is observed. However, the aspect ratio of the emitter mainly influences on the β-factor. KW - Anodes KW - CATHODES KW - FABRICATION KW - field emission KW - field emitter array KW - field enhancement factor KW - Iterative closest point algorithm KW - Lead KW - silicon tips Y1 - 2014 U6 - https://doi.org/10.1109/IVNC.2014.6894805 SP - 193 EP - 194 PB - IEEE ER - TY - JOUR A1 - Bachmann, Michael A1 - Düsberg, Felix A1 - Langer, Christoph A1 - Herdl, Florian A1 - Bergbreiter, Lukas A1 - Dams, Florian A1 - Miyakawa, Natuski A1 - Eggert, Tobias A1 - Pahlke, Andreas A1 - Edler, Simon A1 - Prommesberger, Christian A1 - Ławrowski, Robert Damian A1 - Hausladen, Matthias A1 - Schreiner, Rupert T1 - Vacuum-sealed field emission electron gun JF - Journal of Vacuum Science & Technology B N2 - A compact vacuum-sealed field emission electron gun with an operation voltage below 5 kV is presented. With a 150 nm thick pyrolytic carbon membrane, a transmission of 40% at 5 kV is obtained. For more than 2500 h of continuous operation at an emission current of 100 nA, no significant increase (<50V ) and almost no degradation were found. From this measurement, a lifetime of more than 10 000 h at continuous operation with approximately a linear increase of the extraction voltage from about 545 V to about 730 V is predicted. This electron source enables application of field emitter arrays in poor vacuum or even ambient pressure. ACKNOWLEDGMENT This work was supported by the German Federal Ministry for Economic Affairs and Energy under Project No. ZF4081502GM8. C.P., R.L., M.H., and R.S. were supported by Grant No. ZF4562901GM8. Y1 - 2020 U6 - https://doi.org/10.1116/1.5139316 VL - 38 IS - 2 PB - AIP Publishing ER - TY - JOUR A1 - Edler, Simon A1 - Bachmann, Michael A1 - Breuer, Janis A1 - Dams, Florian A1 - Düsberg, Felix A1 - Hofmann, Martin A1 - Jakšič, Jasna A1 - Pahlke, Andreas A1 - Langer, Christoph A1 - Ławrowski, Robert Damian A1 - Prommesberger, Christian A1 - Schreiner, Rupert T1 - Influence of adsorbates on the performance of a field emitter array in a high voltage triode setup JF - Journal of Applied Physics N2 - In the present work, black-silicon field emitter arrays (FEAs) are investigated regarding the influence of residual gas pressure on the characteristics and lifetime in the high voltage triode setup. Current-voltage-characteristics at different pressure levels are recorded and show a decreasing emission current with rising pressure. This decrease can be explained by an increase of the work function and charging of the emitter surface caused by adsorbates. The emission current can be restored to its initial value by heating of the FEA up to 110 °C during active emission. With this regeneration procedure, an extended lifetime from about 20 h to 440 h at a residual gas pressure of 10−5 mbar is achieved. Y1 - 2017 U6 - https://doi.org/10.1063/1.4987134 VL - 122 ER - TY - JOUR A1 - Kleshch, Victor I. A1 - Serbun, Pavel A1 - Lützenkirchen-Hecht, Dirk A1 - Orekhov, Anton S. A1 - Ivanov, Victor E. A1 - Prommesberger, Christian A1 - Langer, Christoph A1 - Schreiner, Rupert A1 - Obraztsov, Alexander N. T1 - A Comparative Study of Field Emission from Pristine, Ion-treated and Tungsten Nanoparticle-decorated p-type Silicon Tips JF - Physica Status Solidi B N2 - The field electron emission characteristics of individual tips of a silicon field emitter array are analyzed. The array of conical‐shaped tips is fabricated on a p‐type silicon wafer by using reactive ion etching and sharpening oxidation. The tips are decorated with single tungsten nanoparticles at their apexes. Furthermore, the focused ion beam is also used to increase surface conductivity of some of the tips. Comparative measurements of field emission are performed by using the scanning anode probe field emission microscopy technique. All types of tips demonstrated emission activation consisting of a sudden current increase at a certain value of the applied voltage. Compared to the pristine tips, a noticeable reduction of the saturation effect in the current–voltage characteristics and a smaller light sensitivity for the decorated tips is found. For ion‐treated tips, saturation effects and light sensitivity are completely suppressed. Scanning electron microscopy observations reveal the formation of single nanoscale protrusions extending from the metal particles and from the apexes of bare ion‐treated tips after exposure under strong electric fields during the field emission measurements. The influence of protrusions growth on characteristics of silicon field emitter arrays is discussed. Y1 - 2019 U6 - https://doi.org/10.1002/pssb.201800646 VL - 256 IS - 9 PB - Wiley ER - TY - JOUR A1 - Langer, Christoph A1 - Bomke, Vitali A1 - Hausladen, Matthias A1 - Ławrowski, Robert Damian A1 - Prommesberger, Christian A1 - Bachmann, Michael A1 - Schreiner, Rupert T1 - Silicon Chip Field Emission Electron Source Fabricated by Laser Micromachining JF - Journal of Vacuum Science & Technology B N2 - The components for a silicon chip electron source were fabricated by laser micromachining using pulsed laser ablation and wet chemical cleaning and etching dips. The field emission electron source consists of a silicon field emission cathode with 4 × 4 conical shaped emitters with a height of 250 μm and a tip radius of about 50 nm, a 50 μm thick laser-structured mica spacer, and a silicon grid electrode with a grid periodicity of 200 μm and a bar width of 50 μm. These three components are combined to a single chip with the size of 14 × 10 mm2 and the thickness of 1 mm to form the electron source. Several of these devices were characterized in ultrahigh vacuum. Onset voltages of about 165 V and cathode currents of about 15 μA for voltages lower than 350 V were observed. Operating the electron source with an anode voltage of 500 V and an extraction grid voltage of 300 V yielded a cathode current of 4.5 μA ± 8.9%, an anode current of 4.0 μA ± 9.6%, and a corresponding grid transmittance of 89%. Regulating the anode current by the extraction grid voltage, an extremely stable anode current of 5.0 μA ± 0.017% was observed. A long-term measurement over 120 h was performed, and no significant degradation or failure was observed. KW - Ultra-high vacuum KW - Field emitter arrays KW - Etching KW - Electrical properties and parameters KW - Electron sources KW - Laser ablation KW - Laser micromachining KW - Silicon chip KW - Triodes Y1 - 2020 U6 - https://doi.org/10.1116/1.5134872 VL - 38 IS - 1 PB - AIP Publishing ER - TY - JOUR A1 - Breuer, Janis A1 - Bachmann, Michael A1 - Düsberg, Felix A1 - Pahlke, Andreas A1 - Edler, Simon A1 - Langer, Christoph A1 - Prommesberger, Christian A1 - Ławrowski, Robert Damian A1 - Schreiner, Rupert A1 - Serbun, Pavel A1 - Lützenkirchen-Hecht, Dirk T1 - Extraction of the current distribution out of saturated integral measurement data of p-type silicon field emitter arrays JF - Journal of Vacuum Science and Technology B N2 - At the moment, only complicated techniques are known for the determination of array properties of field emitter arrays such as the number of active tips, the current distribution, or the individual tip radii. In this work, a method for extracting these parameters from integral measurement data is presented. A model describing the characteristics of a single emitter, including the saturation as a function of the applied voltage and the emitter radius, is developed. It is shown that experimental data of field emitter arrays can be represented as the sum of these functions and the characteristic parameters can be fitted to field emission data of an array. Using this method, the values of the radii as well as the parameters of distribution models can be determined directly. Analysis of experimental data from p-type Si emitter arrays shows that only 1–2% of the tips contribute significantly. Y1 - 2018 U6 - https://doi.org/10.1116/1.5035189 VL - 36 IS - 5 PB - AIP Publishing ER - TY - JOUR A1 - Bachmann, Michael A1 - Dams, Florian A1 - Düsberg, Felix A1 - Hofmann, Martin A1 - Pahlke, Andreas A1 - Langer, Christoph A1 - Ławrowski, Robert Damian A1 - Prommesberger, Christian A1 - Schreiner, Rupert A1 - Serbun, Pavel A1 - Lützenkirchen-Hecht, Dirk A1 - Müller, Günter T1 - Extraction of the characteristics of current-limiting elements from field emission measurement data JF - Journal of Vacuum Science & Technology B N2 - In this contribution, the authors will present an algorithm to extract the characteristics of nonideal field emission circuit elements from saturation-limited field emission measurement data. The method for calculating the voltage drop on current-limiting circuit elements is based on circuit theory as well as Newton's method. Since the only assumption the authors make on the current-limiting circuit is a connection in series, this method is applicable to most field emission data showing saturation. To be able to determine the significance of any parameter output, the uncertainties of data and extracted parameters as well as the parameter correlations are fully taken into account throughout the algorithm. N-type silicon samples with varying external serial resistors are analyzed. All results show a good agreement to the nominal resistor values. Additionally, several p-type samples are analyzed, showing a diodelike behavior. The extracted current-limiting characteristics of the p-type samples are in good agreement with a pn-junction model. The stability of the emission current of the p-type samples is measured by constant voltage measurements and compared to the extracted current-limiting characteristics. The application of the algorithm to measurement data shows that the given algorithm is a valuable tool to analyze field emission measurement data influenced by nonemissive processes. Y1 - 2017 U6 - https://doi.org/10.1116/1.4971768 VL - 35 IS - 2 ER - TY - JOUR A1 - Prommesberger, Christian A1 - Bachmann, Michael A1 - Düsberg, Felix A1 - Langer, Christoph A1 - Ławrowski, Robert Damian A1 - Hofmann, Martin A1 - Pahlke, Andreas A1 - Schreiner, Rupert T1 - Regulation of the Transmitted Electron Flux in a Field-Emission Electron Source Demonstrated on Si Nanowhisker Cathodes JF - IEEE Transactions on Electron Devices N2 - We report on a method to stabilize the transmitted electron flux in a field-emission electron source using an external regulation circuit. The electron source was realized with an array of silicon (Si) nanowhiskers on the top of elongated pillar structures, a mica spacer, and an extraction grid made of Si. As for most applications, the emitted electron current from the cathode is not as crucial as the transmitted electron flux through the extraction grid toward the anode. We investigated a method which allows the regulation directly by the emitted electron flux and not merely on the cathode current. By using this method, we were able to stabilize the emitted electron flux of our electron source down to values below 1%. Simultaneously, it was shown that there is the possibility to stabilize the influencing value in the real application as well. The effectiveness of this method was demonstrated successfully with an X-ray source setup. The measured X-ray photon count rate was stabilized to a standard deviation of 0.30% at a pressure of 1 × 10 -7 mbar. Even in harsh environment of 2 × 10 -5 mbar, a stabilization of the X-ray photon count rate down to a value of 0.63% was achieved. KW - Cathodes KW - Nanostructured devices KW - Current measurement KW - Photonics KW - Electron sources KW - Emissions KW - Voltage measurement Y1 - 2017 U6 - https://doi.org/10.1109/TED.2017.2763239 SN - 5128-5133 VL - 64 IS - 12 ER - TY - JOUR A1 - Mingels, S. A1 - Porshyn, V. A1 - Prommesberger, Christian A1 - Langer, Christoph A1 - Schreiner, Rupert A1 - Lützenkirchen-Hecht, Dirk A1 - Müller, Günter T1 - Photosensitivity of p-type black Si field emitter arrays JF - Journal of Applied Physics N2 - We have investigated the properties of black Si field emitter arrays under strong electric fields and laser illumination. A low onset field of 1.8 MV/m for an emission current of 1 nA was obtained. A pronounced saturation region of the dark and photo-enhanced current was observed, which provided a short-term stability of 0.1% at 0.4 μA and 0.7% at 1.0 μA, respectively. As maximum value for the photosensitivity, an on-off current switching ratio of 43 reaching about 13 μA was achieved at a laser power of 15 mW. Electron spectra in the dark and under laser illumination are presented, showing a current and light-sensitive voltage drop across the emitters as well as hints for hot electron emission. Y1 - 2016 U6 - https://doi.org/10.1063/1.4948328 VL - 119 IS - 16 ER -