TY - CHAP A1 - Maiwald, Frederik A1 - Tröger, Johannes A1 - Hierl, Stefan T1 - Automated weld seam evaluation and 2D simulation parameter calibration for absorber-free laser transmission welding T2 - Lasers in Manufacturing Conference (LIM 2023), 26. Juni bis 29. Juni 2023, München N2 - Absorber-free laser transmission welding enables clean and precise joining of plastics without additives or adhesives. It is therefore well suited to produce optical and medical devices, which place high demands on cleanliness and accuracy. However, the weld usually has an undesirably large vertical expansion, causing bulges and distortion. To improve this, the intensity distribution of the laser beam as well as the processing strategy must be adapted. Due to the complexity, this is aided by process simulation. However, simulation parameter calibration and verification are usually done considering the seam width and height, which is of limited significance. To overcome this, we propose a new method for image processing of microtome sections, determining the spatially resolved geometry of the weld. Thus, the deviation between experiment and simulation can be calculated pixel by pixel. This spatially resolved value is predestined for the calibration of the simulation parameters: For a parameter field with 18 different settings, the total deviation between experiment and simulation is less than 11 % after calibration. KW - plastics welding KW - image processing KW - simulation KW - optimization Y1 - 2023 UR - https://www.wlt.de/sites/default/files/2023-09/Contribution_122.pdf PB - Wissenschaftliche Gesellschaft Lasertechnik und Photonik e.V. (WLT) ER - TY - CHAP A1 - Käsbauer, Johannes A1 - Schmailzl, Anton A1 - Prehm, Jens A1 - Loose, Tobias A1 - Hierl, Stefan T1 - Simulation of Quasi-Simultaneous Laser Transmission Welding of Plastics BT - Optimization of Material Parameters in Broad Temperature Range T2 - Procedia CIRP N2 - Thermo-mechanical simulation offers great opportunities to optimize welding processes of plastics. For realistic simulation, the temperature dependent mechanical properties need to be implemented from ambient temperature to temperatures above the flow temperature. Standard test methods are insufficient for characterization in the entire temperature range because close to the flow temperature the material is too soft for tensile tests and too stiff for rheometry. Therefore, an optimization strategy is developed, that determines unknown material parameters by testing in welding simulations. The unknown parameters are iteratively adjusted to minimize the mismatch between computed and measured set-paths. Thus, important process characteristics are calculated realistically, enabling the computer aided assessment of the weld quality. KW - plastics welding KW - simulation KW - material modelling KW - optimization KW - parameterization KW - Kunststoffschweißen KW - Thermomechanische Eigenschaft KW - Simulation Y1 - 2020 U6 - https://doi.org/10.1016/j.procir.2020.09.136 VL - 94 SP - 737 EP - 741 PB - Elsevier ER -