TY - CHAP A1 - Langer, Christoph A1 - Prommesberger, Christian A1 - Ławrowski, Robert Damian A1 - Müller, F. A1 - Schreiner, Rupert A1 - Serbun, Pavel A1 - Müller, Günter T1 - Enhanced field emission from p-doped black silicon on pillar structures T2 - 2015 28th International Vacuum Nanoelectronics Conference (IVNC), 13-17 July 2015, Guangzhou, China N2 - Aligned square arrays of black silicon (b-Si) on top of pillars were fabricated on p-type silicon substrate by a deep-etching step combined with a b-Si process. Two 10×10 arrays with pillar heights of 8 μm and 20 μm and one b-Si reference sample without pillars were investigated. Integral field emission (FE) measurements of the arrays yielded rather low onset-fields between 6.4 V/μm and 13.5 V/μm and field enhancement factors between 430 and 800. The I-V curves showed typical Fowler-Nordheim behavior for low fields, whereas a saturation region was observed at higher fields. The maximum integral current in the saturation region was 8 μA at a field of 20 V/μm. The stability of the emission current was investigated over 3 hours and revealed moderate fluctuations of ± 8% in the saturation region. Voltage scans showed well-aligned FE from nearly all pillars. KW - black silicon KW - CATHODES KW - Current measurement KW - Etching KW - FABRICATION KW - field emission KW - field emitter array KW - Iron KW - silicon KW - Vacuum technology Y1 - 2015 U6 - https://doi.org/10.1109/IVNC.2015.7225547 SP - 104 EP - 105 PB - IEEE ER - TY - CHAP A1 - Prommesberger, Christian A1 - Langer, Christoph A1 - Ławrowski, Robert Damian A1 - Muller, F. A1 - Dams, Florian A1 - Schreiner, Rupert A1 - Serbun, Pavel A1 - Müller, Günter T1 - Comparison of integral and local field-emission properties of Mo-coated p-Si tip arrays T2 - 2015 28th International Vacuum Nanoelectronics Conference (IVNC), 13-17 July 2015, Guangzhou, China N2 - Silicon tip arrays were fabricated by means of reactive ion etching followed by oxidation for final sharpening and molybdenum thin film coating. The field-emission (FE) properties of these Mo-coated p-Si tip arrays were systemically investigated by different measurement techniques. Integral measurements in diode configuration yielded a turn-on field (for 1 nA) of 22 V/μm and nearly stable FE currents up to 6.6 μA at 38 V/μm. The effective field enhancements factor extracted from the FN plots is about 180. Detailed investigations of these FE arrays were also performed by means of field emission scanning microscopy combined with electron microscopy. A rather limited efficiency of the tips (50% at 1500 V) and FE homogeneity (180 nA at 700 V) might be correlated with the varying morphology of the tips and the presence of oxides. Local I-V measurements of selected single tips revealed both activation and deactivation effects, which finally resulted in nearly reproducible I-V curves. Current stability measurements at a constant voltage showed rather large fluctuations (0.1-1 μA) of the FE current, which could be reduced up to 1.7% by using of a PID-regulated voltage source. SEM images showed unchanged tip shape after the current processing. KW - CATHODES KW - Coatings KW - Current measurement KW - field emission KW - Iron KW - Mo-coated KW - p-Si tip KW - Scanning electron microscopy KW - silicon KW - tip arrays KW - Vacuum technology Y1 - 2015 U6 - https://doi.org/10.1109/IVNC.2015.7225579 SP - 192 EP - 193 PB - IEEE ER - TY - CHAP A1 - Bieker, Johannes A1 - Roustaie, Farough A1 - Schlaak, Helmut F. A1 - Langer, Christoph A1 - Schreiner, Rupert T1 - Field emission characterization of in-situ deposited metallic nanocones T2 - 2017 30th International Vacuum Nanoelectronics Conference (IVNC), 10-14 July 2017, Regensburg, Germany N2 - An in-situ fabrication technique based on ion track etched template electrodeposition of metallic nanocones was used for the production of field emitter cathodes. Gold nanocones with a height of 24 microns, a base diameter between 3 to 4 microns and a tip diameter below 300 nanometers were deposited on a circular electrode with a diameter of 2.5 mm. The integral field emission (FE) measurements of samples with cone densities of 6 · 104 cones/cm2 (sample A) and 1 · 106 cones/cm2 (sample B) yielded in a maximum current of 37.5 μA at an applied field of 12.5 V/μm for sample A and 29.1 μA at 9.4 V/μm for sample B. The stability of emission current was investigated for over 48 hours and no degradation was observed. KW - CATHODES KW - Current measurement KW - FABRICATION KW - field emission KW - ion track template KW - Ions KW - Iron KW - nanocones KW - Vacuum technology KW - Voltage measurement Y1 - 2017 U6 - https://doi.org/10.1109/IVNC.2017.8051571 SP - 120 EP - 121 PB - IEEE ER -