TY - CHAP A1 - Palm, Christoph A1 - Pietrzyk, Uwe T1 - Time-Dependent Joint Probability Speed Function for Level-Set Segmentation of Rat-Brain Slices T2 - Proceedings of the SPIE Medical Imaging 6914: Image Processing 69143U N2 - The segmentation of rat brain slices suffers from illumination inhomogeneities and staining effects. State-of-the-art level-set methods model slice and background with intensity mixture densities defining the speed function as difference between the respective probabilites. Nevertheless, the overlap of these distributions causes an inaccurate stopping at the slice border. In this work, we propose the characterisation of the border area with intensity pairs for inside and outside estimating joint intensity probabilities. Method - In contrast to global object and background models, we focus on the object border characterised by a joint mixture density. This specifies the probability of the occurance of an inside and an outside value in direct adjacency. These values are not known beforehand, because inside and outside depend on the level-set evolution and change during time. Therefore, the speed function is computed time-dependently at the position of the current zero level-set. Along this zero level-set curve, the inside and outside values are derived as mean along the curvature normal directing inside and outside the object. Advantage of the joint probability distribution is to resolve the distribution overlaps, because these are assumed to be not located at the same border position. Results - The novel time-dependent joint probability based speed function is compared expermimentally with single probability based speed functions. Two rat brains with about 40 slices are segmented and the results analysed using manual segmentations and the Tanimoto overlap measure. Improved results are recognised for both data sets. KW - Image segmentation KW - Brain KW - Visualization KW - Image processing KW - Medical imaging KW - Neuroimaging KW - Beryllium KW - Kernspintomografie KW - Histologie KW - Schnittdarstellung KW - Bildsegmentierung KW - Gehirn Y1 - 2008 U6 - https://doi.org/10.1117/12.770673 IS - 6914 SP - 69143U-1 EP - 69143U-8 ER - TY - JOUR A1 - Deserno, Thomas M. A1 - Handels, Heinz A1 - Maier-Hein, Klaus H. A1 - Mersmann, Sven A1 - Palm, Christoph A1 - Tolxdorff, Thomas A1 - Wagenknecht, Gudrun A1 - Wittenberg, Thomas T1 - Viewpoints on Medical Image Processing BT - From Science to Application JF - Current Medical Imaging Reviews N2 - Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment. KW - Medical imaging KW - Image processing KW - Image analysis KW - Vizualization KW - Multi-modal imaging KW - Diffusion-weighted imaging KW - Model-based imaging KW - Digital endoscopy KW - Bildgebendes Verfahren KW - Bildverarbeitung KW - Medizin Y1 - 2013 U6 - https://doi.org/10.2174/1573405611309020002 VL - 9 IS - 2 SP - 79 EP - 88 ER -