TY - JOUR A1 - Plonus, Rene-Marcel A1 - Vogl, Stefanie A1 - Floeter, Jens T1 - Automatic Segregation of Pelagic Habitats JF - Frontiers in Marine Science N2 - It remains difficult to segregate pelagic habitats since structuring processes are dynamic on a wide range of scales and clear boundaries in the open ocean are non-existent. However, to improve our knowledge about existing ecological niches and the processes shaping the enormous diversity of marine plankton, we need a better understanding of the driving forces behind plankton patchiness. Here we describe a new machine-learning method to detect and quantify pelagic habitats based on hydrographic measurements. An Autoencoder learns two-dimensional, meaningful representations of higher-dimensional micro-habitats, which are characterized by a variety of biotic and abiotic measurements from a high-speed ROTV. Subsequently, we apply a density-based clustering algorithm to group similar micro-habitats into associated pelagic macro-habitats in the German Bight of the North Sea. Three distinct macro-habitats, a “surface mixed layer,” a “bottom layer,” and an exceptionally “productive layer” are consistently identified, each with its distinct plankton community. We provide evidence that the model detects relevant features like the doming of the thermocline within an Offshore Wind Farm or the presence of a tidal mixing front. KW - machine learning KW - North Sea KW - submesoscale KW - pelagic habitats KW - plankton patchiness Y1 - 2021 U6 - https://doi.org/10.3389/fmars.2021.754375 PB - Frontiers ET - 8 ER - TY - GEN A1 - Roser, D. A. A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Palm, Christoph A1 - Probst, Andreas A1 - Muzalyova, A. A1 - Scheppach, Markus W. A1 - Nagl, S. A1 - Schnoy, Elisabeth A1 - Römmele, Christoph A1 - Schulz, D. A1 - Schlottmann, Jakob A1 - Prinz, Friederike A1 - Rauber, David A1 - Rückert, Tobias A1 - Matsumura, T. A1 - Fernandez-Esparrach, G. A1 - Parsa, N. A1 - Byrne, M. A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Human-Computer Interaction: Impact of Artificial Intelligence on the diagnostic confidence of endoscopists assessing videos of Barrett’s esophagus T2 - Endoscopy N2 - Aims Human-computer interactions (HCI) may have a relevant impact on the performance of Artificial Intelligence (AI). Studies show that although endoscopists assessing Barrett’s esophagus (BE) with AI improve their performance significantly, they do not achieve the level of the stand-alone performance of AI. One aspect of HCI is the impact of AI on the degree of certainty and confidence displayed by the endoscopist. Indirectly, diagnostic confidence when using AI may be linked to trust and acceptance of AI. In a BE video study, we aimed to understand the impact of AI on the diagnostic confidence of endoscopists and the possible correlation with diagnostic performance. Methods 22 endoscopists from 12 centers with varying levels of BE experience reviewed ninety-six standardized endoscopy videos. Endoscopists were categorized into experts and non-experts and randomly assigned to assess the videos with and without AI. Participants were randomized in two arms: Arm A assessed videos first without AI and then with AI, while Arm B assessed videos in the opposite order. Evaluators were tasked with identifying BE-related neoplasia and rating their confidence with and without AI on a scale from 0 to 9. Results The utilization of AI in Arm A (without AI first, with AI second) significantly elevated confidence levels for experts and non-experts (7.1 to 8.0 and 6.1 to 6.6, respectively). Only non-experts benefitted from AI with a significant increase in accuracy (68.6% to 75.5%). Interestingly, while the confidence levels of experts without AI were higher than those of non-experts with AI, there was no significant difference in accuracy between these two groups (71.3% vs. 75.5%). In Arm B (with AI first, without AI second), experts and non-experts experienced a significant reduction in confidence (7.6 to 7.1 and 6.4 to 6.2, respectively), while maintaining consistent accuracy levels (71.8% to 71.8% and 67.5% to 67.1%, respectively). Conclusions AI significantly enhanced confidence levels for both expert and non-expert endoscopists. Endoscopists felt significantly more uncertain in their assessments without AI. Furthermore, experts with or without AI consistently displayed higher confidence levels than non-experts with AI, irrespective of comparable outcomes. These findings underscore the possible role of AI in improving diagnostic confidence during endoscopic assessment. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1782859 SN - 1438-8812 VL - 56 IS - S 02 SP - 79 PB - Georg Thieme Verlag ER - TY - JOUR A1 - Koenig, Eric A1 - Guertler, Katherine T1 - One Size Does Not Fit All: Individuality and Perceptions of Improvement and Satisfaction Among TE Students JF - English Teaching & Learning N2 - Academic self-regulation is a key factor for motivation and learning achievement. Yet with the large range of individual factors, this is not a one-size-fits-all proposition. This study of L2 Technical English students at two German universities explored learners’ expectations and motivations, in particular regarding self-regulation and self-efficacy via the individual’s time investment in self-led study. In an initial survey, learners (N=1646) reported on their English skill levels and anticipated learning habits. Complementarily, the retrospective survey investigated learners’ (N=796) actual behavior during the course, their perceptions of language skill improvement, and their satisfaction. The initial survey indicates a clear understanding that time investment in self-regulated study will lead to greater improvement, an outcome confirmed in the retrospective survey. Additionally, students who invested more time in their coursework were more satisfied with their achievement, although most learners acknowledge they should have studied more. The results verify that learners recognize the nexus between self-regulation and language skill improvement, yet university students are not satisfied with their capacity to self-regulate their language learning strategies. While differences in students’ skill levels and academic self-efficacy result in divergent degrees of progress, students of all types report benefits to their language skills when motivated to self-regulated study. KW - English KW - Technical English KW - Self-efficacy KW - Self-regulation KW - Motivation Y1 - 2021 U6 - https://doi.org/10.1007/s42321-021-00076-4 SN - 1023-7267 VL - 45 IS - 3 SP - 303 EP - 324 PB - Springer Science and Business Media ER - TY - JOUR A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Palm, Christoph A1 - Probst, Andreas A1 - Muzalyova, Anna A1 - Scheppach, Markus Wolfgang A1 - Nagl, Sandra A1 - Schnoy, Elisabeth A1 - Römmele, Christoph A1 - Schulz, Dominik Andreas Helmut Otto A1 - Schlottmann, Jakob A1 - Prinz, Friederike A1 - Rauber, David A1 - Rückert, Tobias A1 - Matsumura, Tomoaki A1 - Fernández-Esparrach, Glòria A1 - Parsa, Nasim A1 - Byrne, Michael F A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Effect of AI on performance of endoscopists to detect Barrett neoplasia: A Randomized Tandem Trial JF - Endoscopy N2 - Background and study aims To evaluate the effect of an AI-based clinical decision support system (AI) on the performance and diagnostic confidence of endoscopists during the assessment of Barrett's esophagus (BE). Patients and Methods Ninety-six standardized endoscopy videos were assessed by 22 endoscopists from 12 different centers with varying degrees of BE experience. The assessment was randomized into two video sets: Group A (review first without AI and second with AI) and group B (review first with AI and second without AI). Endoscopists were required to evaluate each video for the presence of Barrett's esophagus-related neoplasia (BERN) and then decide on a spot for a targeted biopsy. After the second assessment, they were allowed to change their clinical decision and confidence level. Results AI had a standalone sensitivity, specificity, and accuracy of 92.2%, 68.9%, and 81.6%, respectively. Without AI, BE experts had an overall sensitivity, specificity, and accuracy of 83.3%, 58.1 and 71.5%, respectively. With AI, BE nonexperts showed a significant improvement in sensitivity and specificity when videos were assessed a second time with AI (sensitivity 69.7% (95% CI, 65.2% - 74.2%) to 78.0% (95% CI, 74.0% - 82.0%); specificity 67.3% (95% CI, 62.5% - 72.2%) to 72.7% (95 CI, 68.2% - 77.3%). In addition, the diagnostic confidence of BE nonexperts improved significantly with AI. Conclusion BE nonexperts benefitted significantly from the additional AI. BE experts and nonexperts remained below the standalone performance of AI, suggesting that there may be other factors influencing endoscopists to follow or discard AI advice. Y1 - 2024 U6 - https://doi.org/10.1055/a-2296-5696 SN - 0013-726X N1 - Accepted Manuscript PB - Georg Thieme Verlag ER - TY - JOUR A1 - Lehrer, Tobias A1 - Kaps, Arne A1 - Lepenies, Ingolf A1 - Raponi, Elena A1 - Wagner, Marcus A1 - Duddeck, Fabian T1 - Complementing Drawability Assessment of Deep-Drawn Components with Surrogate-Based Global Sensitivity Analysis JF - ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering N2 - In the early-stage development of sheet metal parts, key design properties of new structures must be specified. As these decisions are made under significant uncertainty regarding drawing configuration changes, they sometimes result in the development of new parts that, at a later design stage, will not be drawable. As a result, there is a need to increase the certainty of experience-driven drawing configuration decisions. Complementing this process with a global sensitivity analysis can provide insight into the impact of various changes in drawing configurations on drawability, unveiling cost-effective strategies to ensure the drawability of new parts. However, when quantitative global sensitivity approaches, such as Sobol's method, are utilized, the computational requirements for obtaining Sobol indices can become prohibitive even for small application problems. To circumvent computational limitations, we evaluate the applicability of different surrogate models engaged in computing global design variable sensitivities for the drawability assessment of a deep-drawn component. Here, we show in an exemplary application problem, that both a standard kriging model and an ensemble model can provide commendable results at a fraction of the computational cost. Moreover, we compare our surrogate models to existing approaches in the field. Furthermore, we show that the error introduced by the surrogate models is of the same order of magnitude as that from the choice of drawability measure. In consequence, our surrogate models can improve the cost-effective development of a component in the early design phase. KW - sheet metal forming KW - deep drawing KW - global sensitivity analysis KW - variance-based sensitivity analysis KW - metamodeling Y1 - 2024 U6 - https://doi.org/10.1115/1.4065143 SN - 2332-9025 SP - 1 EP - 10 PB - ASME ER - TY - CHAP A1 - Völkl, Jakob A1 - Melzer, Matthias A1 - Dünnweber, Jan A1 - Sarkar, Amitrajit T1 - Dynamic Route Planning for a Data Collecting Luggage Transport Service T2 - 18th IEEE International Conference on Control & Automatio), June 18-21, 2024, Reykjavík, Iceland N2 - Control and Automation of services of the urban infrastructure offered to citizens and tourists are elementary parts of a smart city. But both rely on a stable supply of data from sensors spread across the whole city, e. g., the fill level sensors of waste bins needed for a waste management tool which we developed in a collaboration with the Regensburg city council for the on-demand collection of waste bins. Europe has a lot of historic cities like Regensburg with narrow streets and huge building walls, some made from granite and fieldstones, which often represents an insurmountable obstacle to wireless data transmission. The reduction of the road traffic volume poses an additional challenge for city planners. By means of networked planning and simulation software, the situation, state and efficiency of citywide logistic services can be monitored and optimized. In the course of such optimizations, we propose the combination of digital and logistic services. As an example, we show that monitoring state information, such as the waste bin fill levels, can be accomplished using the same vehicles and the same planning software, that is used for luggage transportation. Moreover, we describe how we adapted a solver for a variant of the TSP, namely the prize-collecting traveling salesman, to optimize the route planning dynamically. Y1 - 2024 PB - IEEE ER - TY - BOOK A1 - Dach, Christian T1 - Inbound-Marketing für B2B-Unternehmen BT - Neukunden digital gewinnen N2 - Dieses essential erläutert, wie B2B-Unternehmen Inbound-Marketing erfolgreich umsetzen können, um ihre Vertriebsergebnisse nachhaltig zu verbessern. Der Schlüssel liegt in kontinuierlich generiertem Content, der über geeignete Kanäle ausgespielt wird – mit dem Ziel, dass Potenzialkunden von sich aus auf das verkaufende Unternehmen zukommen. Marketing-Automation-Software ermöglicht dabei eine individuelle und gleichzeitig kostengünstige Interaktion mit potenziellen Kunden. Ist ein Lead „Sales Ready“, kann der Vertrieb den bereits interessierten und qualifizierten Kontakt übernehmen. KW - Business-to-Business-Marketing Y1 - 2023 SN - 9783658422615 U6 - https://doi.org/10.1007/978-3-658-42262-2 SN - 2197-6708 PB - Springer Fachmedien CY - Wiesbaden ER - TY - JOUR A1 - Buchner, Philipp A1 - Hausladen, Matthias A1 - Bartl, Mathias A1 - Bachmann, Michael A1 - Schreiner, Rupert T1 - High current field emission from Si nanowires on pillar structures JF - Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics N2 - We investigate the influence of the geometry and doping level on the performance of n-type silicon nanowire field emitters on silicon pillar structures. Therefore, multiple cathodes with 50 by 50 pillar arrays (diameter: 5 μm, height: 30 μm, spacing: 50 μm) were fabricated and measured in diode configuration. In the first experiment, we compared two geometry types using the same material. Geometry 1 is black silicon, which is a highly dense surface covering a forest of tightly spaced silicon needles resulting from self-masking during a plasma etching process of single crystal silicon. Geometry 2 are silicon nanowires, which are individual spaced-out nanowires in a crownlike shape resulting from a plasma etching process of single crystal silicon. In the second experiment, we compared two different silicon doping levels [n-type (P), 1–10 and <0.005 Ω cm] for the same geometry. The best performance was achieved with lower doped silicon nanowire samples, emitting 2 mA at an extraction voltage of 1 kV. The geometry/material combination with the best performance was used to assemble an integrated electron source. These electron sources were measured in a triode configuration and reached onset voltages of about 125 V and emission currents of 2.5 mA at extraction voltages of 400 V, while achieving electron transmission rates as high as 85.0%. KW - Doping KW - Electron sources KW - Nanowires KW - Plasma processing KW - Field emitter arrays KW - Triodes KW - Semiconductors Y1 - 2024 U6 - https://doi.org/10.1116/6.0003384 SN - 2166-2754 VL - 42 IS - 2 PB - AIP ER - TY - JOUR A1 - Schuderer, Matthias A1 - Rill, Georg A1 - Schaeffer, Thomas A1 - Schulz, Carsten T1 - Friction modeling from a practical point of view JF - Multibody System Dynamics N2 - AbstractRegularized static friction models have been used successfully for many years. However, they are unable to maintain static friction in detail. For this reason, dynamic friction models have been developed and published in the literature. However, commercial multibody simulation packages such as Adams, RecurDyn, and Simpack have developed their own specific stick-slip models instead of adopting one of the public domain approaches. This article introduces the fundamentals of these commercial models and their behavior from a practical point of view. The stick-slip models were applied to a simple test model and a more sophisticated model of a festoon cable system using their standard parameters. KW - Multibody dynamics KW - Friction KW - Stick-slip effect KW - Adams KW - RecurDyn KW - Simpack Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-72513 SN - 1384-5640 N1 - Corresponding author: Matthias Schuderer PB - Springernature ER - TY - JOUR A1 - Pangerl, Jonas A1 - Sukul, Pritam A1 - Rück, Thomas A1 - Fuchs, Patricia A1 - Weigl, Stefan A1 - Miekisch, Wolfram A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - An inexpensive UV-LED photoacoustic based real-time sensor-system detecting exhaled trace-acetone JF - Photoacoustics N2 - n this research we present a low-cost system for breath acetone analysis based on UV-LED photoacoustic spectroscopy. We considered the end-tidal phase of exhalation, which represents the systemic concentrations of volatile organic compounds (VOCs) – providing clinically relevant information about the human health. This is achieved via the development of a CO2-triggered breath sampling system, which collected alveolar breath over several minutes in sterile and inert containers. A real-time mass spectrometer is coupled to serve as a reference device for calibration measurements and subsequent breath analysis. The new sensor system provided a 3σ detection limit of 8.3 ppbV and an NNEA of 1.4E-9 Wcm 1Hz 0.5. In terms of the performed breath analysis measurements, 12 out of 13 fell within the error margin of the photoacoustic measurement system, demonstrating the reliability of the measurements in the field. KW - Photoacoustic spectroscopy KW - Real-time mass-spectrometry KW - Breath analysis KW - Acetone KW - UV-LED Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-71279 SN - 2213-5979 N1 - Corresponding author der OTH Regensburg: Jonas Pangerl VL - 38 PB - Elsevier ER -