@article{MaierSchlattlGuessetal., author = {Maier, Robert and Schlattl, Andreas and Guess, Thomas and Mottok, J{\"u}rgen}, title = {CausalOps - Towards an industrial lifecycle for causal probabilistic graphical models}, series = {Information and Software Technology}, journal = {Information and Software Technology}, publisher = {Elsevier}, issn = {0950-5849}, doi = {10.1016/j.infsof.2024.107520}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-73350}, abstract = {Context: Causal probabilistic graph-based models have gained widespread utility, enabling the modeling of cause-and-effect relationships across diverse domains. With their rising adoption in new areas, such as safety analysis of complex systems, software engineering, and machine learning, the need for an integrated lifecycle framework akin to DevOps and MLOps has emerged. Currently, such a reference for organizations interested in employing causal engineering is missing. This lack of guidance hinders the incorporation and maturation of causal methods in the context of real-life applications. Objective: This work contextualizes causal model usage across different stages and stakeholders and outlines a holistic view of creating and maintaining them within the process landscape of an organization. Method: A novel lifecycle framework for causal model development and application called CausalOps is proposed. By defining key entities, dependencies, and intermediate artifacts generated during causal engineering, a consistent vocabulary and workflow model to guide organizations in adopting causal methods are established. Results: Based on the early adoption of the discussed methodology to a real-life problem within the automotive domain, an experience report underlining the practicability and challenges of the proposed approach is discussed. Conclusion: It is concluded that besides current technical advancements in various aspects of causal engineering, an overarching lifecycle framework that integrates these methods into organizational practices is missing. Although diverse skills from adjacent disciplines are widely available, guidance on how to transfer these assets into causality-driven practices still need to be addressed in the published literature. CausalOps' aim is to set a baseline for the adoption of causal methods in practical applications within interested organizations and the causality community.}, language = {en} } @article{BauerSterner, author = {Bauer, Franz and Sterner, Michael}, title = {Impacts of lifestyle changes on energy demand and greenhouse gas emissions in Germany}, series = {Renewable and Sustainable Energy Reviews}, volume = {207}, journal = {Renewable and Sustainable Energy Reviews}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1364-0321}, doi = {10.1016/j.rser.2024.114944}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-77682}, pages = {17}, abstract = {Most energy scenario studies typically focus on technological options and fuel substitution for decarbonising future energy systems. Lifestyle changes are rarely considered, although they can significantly reduce energy demand and climate change mitigation efforts. By using an energy system model, this study shows that it is possible to reduce final energy demand in Germany by 61 \% in 2050 relative to 2019 levels, resulting in an annual per capita energy demand of 44 GJ for a representative country of the Global North. This goal can be achieved through a combination of technological measures and lifestyle changes without sacrificing a decent standard of living. Societal chances can eliminate reliance on not-yet-established negative emission technologies, reduce energy dependency, and reduce the need for energy-intensive hydrogen and e-fuels. Downsizing the energy system provides an opportunity for strengthening climate change mitigation, decrease material demand and reduce land use.}, language = {en} } @article{EscherRueckJobstetal., author = {Escher, Lukas and R{\"u}ck, Thomas and Jobst, Simon and Pangerl, Jonas and Bierl, Rudolf and Matysik, Frank-Michael}, title = {Photodissociation-Driven Photoacoustic Spectroscopy with UV-LEDs for Ozone Detection}, series = {Photoacoustics}, volume = {43}, journal = {Photoacoustics}, publisher = {Elsevier BV}, issn = {2213-5979}, doi = {10.1016/j.pacs.2025.100718}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-80076}, pages = {16}, abstract = {This study presents the development and evaluation of a UV-LED based photoacoustic (PA) measurement system for ozone (O3) detection to demonstrate its potential for low-cost and accurate sensing while for the first time addressing the importance of photodissociation for PA signal generation for O3 in the UV range. With a detection limit of 7.9 ppbV, the system exhibits a significant advancement over state-of-the-art UV-PA O3 detection and is on par with laser-based setups. Following a novel discussion of the PA signal arising from photodissociation and its products, cross-sensitivity effects due to environmental factors such as temperature and gas composition were systematically analyzed. A digital twin driven compensation for these influences was implemented and evaluated. Despite the challenges associated with modeling the effects of H2O and CO2, the PA system shows considerable potential, though further studies in real world applications must be conducted.}, language = {en} } @article{KrieglKrenkelShamoninChamonine, author = {Kriegl, Raphael and Krenkel, Lars and Shamonin (Chamonine), Mikhail}, title = {Preservation of wetting ridges using field-induced plasticity of magnetoactive elastomers}, series = {Journal of Colloid and Interface Science}, volume = {683}, journal = {Journal of Colloid and Interface Science}, publisher = {Elsevier}, issn = {0021-9797}, doi = {10.1016/j.jcis.2024.12.132}, pages = {1019 -- 1027}, abstract = {Hypothesis. The presence of a wetting ridge is crucial for many wetting phenomena on soft substrates. Conventional experimental observations of a wetting ridge require permanent presence of a droplet. The magnetic field-induced plasticity effect (FIPE) of soft magnetoative elastomers (MAEs) allows one to overcome this limitation. Depositing a droplet onto an MAE surface and applying a magnetic field fixes the wetting ridge in place due to the FIPE. The droplet can be removed to investigate the ridge with ease using conventional optical methods. Experiments. The wetting ridge is observed on MAEs with different shear moduli and different material thicknesses by confocal laser scanning microscopy (LSM). The preservation quality of the ridge is analyzed for several values of magnetic field from 10 mT to 270 mT. To verify the plausibilty of results obtained, the measured shape is compared to a theoretical model by Style \& Dufresne. Findings. Upon removal of the sessile droplet, the deformation remains embossed onto the MAE surface as long as the magnetic field remains applied. The height of the ridge peak on soft samples (effective shear modulus kPa) is close to the theoretical prediction for a magnetic flux density of 50 mT. The magnitude of the external magnetic field magnifies the height of the wetting ridge.}, language = {en} } @article{KloiberAnetsbergerSchultheissetal., author = {Kloiber, Jessica and Anetsberger, Viktoria and Schultheiß, Ulrich and Hornberger, Helga}, title = {High quality surfaces of magnesium alloy AZ31 by adjusting appropriate electropolishing parameters}, series = {Electrochimica Acta}, volume = {513}, journal = {Electrochimica Acta}, publisher = {Elsevier}, doi = {10.1016/j.electacta.2024.145547}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-79298}, language = {en} } @article{KloiberSchultheissHornberger, author = {Kloiber, Jessica and Schultheiß, Ulrich and Hornberger, Helga}, title = {Impact of heat treatment on the surface quality of electropolished WE43 alloy}, series = {Materials Letters}, volume = {397}, journal = {Materials Letters}, publisher = {Elsevier BV}, issn = {0167-577X}, doi = {10.1016/j.matlet.2025.138821}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-83512}, pages = {5}, abstract = {In this study, the Mg alloy WE43 was solution annealed and precipitation hardened prior to electropolishing to evaluate the effects of different microstructures on the electropolishing result. While coarsely distributed precipitates led to surfaces showing wavy structures and dents after electropolishing, a uniform microstructure resulted in an even finish of the surface. The homogenization and refinement of the microstructure by heat treatment is a method to ensure improved electropolished surfaces of Mg materials}, language = {en} } @article{SternerHofrichterMeisingeretal., author = {Sterner, Michael and Hofrichter, Andreas and Meisinger, Alexander and Bauer, Franz and Pinkwart, Karsten and Maletzko, Annabelle and Dittmar, Felix and Cremers, Carsten}, title = {19 Import options for green hydrogen and derivatives - An overview of efficiencies and technology readiness levels}, series = {International Journal of Hydrogen Energy}, volume = {90}, journal = {International Journal of Hydrogen Energy}, publisher = {Elsevier}, issn = {0360-3199}, doi = {10.1016/j.ijhydene.2024.10.045}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-77756}, pages = {1112 -- 1127}, abstract = {The import of hydrogen and derivatives forms part of many national strategies and is fundamental to achieving climate protection targets. This paper provides an overview and technical comparison of import pathways for hydrogen and derivatives in terms of efficiency, technological maturity and development and construction times with a focus on the period up to 2030. The import of hydrogen via pipeline has the highest system efficiency at 57-67 \% and the highest technological maturity with a technology readiness level (TRL) of 8-9. The import of ammonia and methanol via ship and of SNG via pipeline shows efficiencies in the range of 39-64 \% and a technological maturity of TRL 7 to 9 when using point sources. Liquid hydrogen, LOHC and Fischer-Tropsch products have the lowest efficiency and TRL in comparison. The use of direct air capture (DAC) reduces efficiency and TRL considerably. Reconversion of the derivatives to hydrogen is also associated with high losses and is not achievable for all technologies on an industrial scale up to 2030. In the short to medium term, import routes for derivatives that can utilise existing infrastructures and mature technologies are the most promising for imports. In the long term, the most promising option is hydrogen via pipelines.}, language = {en} } @article{PangerlSukulRuecketal., author = {Pangerl, Jonas and Sukul, Pritam and R{\"u}ck, Thomas and Escher, Lukas and Miekisch, Wolfram and Bierl, Rudolf and Matysik, Frank-Michael}, title = {Photoacoustic trace-analysis of breath isoprene and acetone via interband- and Quantum Cascade Lasers}, series = {Sensors and Actuators: B. Chemical}, volume = {424}, journal = {Sensors and Actuators: B. Chemical}, publisher = {Elsevier}, doi = {10.1016/j.snb.2024.136886}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-77024}, pages = {12}, abstract = {This research presents two laser-based photoacoustic approaches for analyzing exhaled breath isoprene and acetone. The integration of a PTR-ToF-MS as a reference device ensured the reliability and accuracy of the photoacoustic systems that is based on an ICL for isoprene and a QCL for acetone detection. The calibration yielded limits of detection of 26.9 ppbV and 1.7 ppbV, respectively, and corresponding normalized noise equivalent absorption coefficients (NNEAs) of 5.0E-9 Wcm 1Hz 0.5 and 4.9E-9 Wcm 1Hz 0.5. Laboratory as well as real breath sample measurements from alveolar breath revealed a robust system performance, with only one outlier within the static isoprene measurements. However, discrepancies emerged under dynamic breath sampling conditions, emphasizing the need for further optimization. Especially by knowing the dynamic nature and endogenous origin of exhaled isoprene our findings highlight the potential of breath analysis for non-invasive physio-metabolic and pathophysiological monitoring towards point-of-care devices}, language = {en} } @article{PutzSchirmerSattleretal., author = {Putz, Christoph and Schirmer, Maximilian and Sattler, Robert and Monkman, Gareth J.}, title = {Fabrication of Bisphenol-free Boron-Siloxane Polymers}, series = {Materials Chemistry and Physics}, journal = {Materials Chemistry and Physics}, edition = {Journal Pre-proof}, publisher = {Elsevier}, doi = {10.1016/j.matchemphys.2025.130567}, abstract = {Interest in the preparation of magnetoactive boron-siloxane polymers (MBP) has been stimulated by recent scientific developments. However, recent regulations have prohibited the inclusion of Bisphenol-A normally employed in the manufacture of commercially available products. In the following publication, two different routes for the preparation of magnetoactive borosiloxane polymers have been taken. First, the possibilities of obtaining homogeneous mixtures of magnetoactive polymers by mixing the magnetic particles with the polymer using solid CO2 (dry ice) and stirring (shearing) are investigated. In the course of the work, an approach for the preparation of reference materials of different viscosities was made to prove the transferability to other elastomers. This is then followed by a brief review of the reaction of the polymer with different solvents in relation to the mixing with particles. In manually kneaded compounds, dispersions ranging from 0.00004 to 0.004 particles per mm3 are common. The process described in this work resulted in agglomerations of no greater than 0.00004 particles per mm3 A possible synthesis route for bisphenol-free boron-siloxanes is then considered, in which for the polymer matrix, polydimethylsilanes (dichloro(methyl)silane), boric acid and iron(III)chloride are used for this purpose by polycondensation.}, language = {en} } @article{RueckertRueckertPalm, author = {R{\"u}ckert, Tobias and R{\"u}ckert, Daniel and Palm, Christoph}, title = {Methods and datasets for segmentation of minimally invasive surgical instruments in endoscopic images and videos: A review of the state of the art}, series = {Computers in Biology and Medicine}, volume = {169}, journal = {Computers in Biology and Medicine}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.compbiomed.2024.107929}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-69830}, pages = {24}, abstract = {In the field of computer- and robot-assisted minimally invasive surgery, enormous progress has been made in recent years based on the recognition of surgical instruments in endoscopic images and videos. In particular, the determination of the position and type of instruments is of great interest. Current work involves both spatial and temporal information, with the idea that predicting the movement of surgical tools over time may improve the quality of the final segmentations. The provision of publicly available datasets has recently encouraged the development of new methods, mainly based on deep learning. In this review, we identify and characterize datasets used for method development and evaluation and quantify their frequency of use in the literature. We further present an overview of the current state of research regarding the segmentation and tracking of minimally invasive surgical instruments in endoscopic images and videos. The paper focuses on methods that work purely visually, without markers of any kind attached to the instruments, considering both single-frame semantic and instance segmentation approaches, as well as those that incorporate temporal information. The publications analyzed were identified through the platforms Google Scholar, Web of Science, and PubMed. The search terms used were "instrument segmentation", "instrument tracking", "surgical tool segmentation", and "surgical tool tracking", resulting in a total of 741 articles published between 01/2015 and 07/2023, of which 123 were included using systematic selection criteria. A discussion of the reviewed literature is provided, highlighting existing shortcomings and emphasizing the available potential for future developments.}, subject = {Deep Learning}, language = {en} }