@inproceedings{StauferBugertHauseretal., author = {Staufer, Susanne and Bugert, Flemming and Hauser, Florian and Grabinger, Lisa and Ezer, Timur and Nadimpalli, Vamsi Krishna and Bittner, Dominik and R{\"o}hrl, Simon and Mottok, J{\"u}rgen}, title = {Tyche algorithm: Markov models for generating learning paths in learning management systems}, series = {INTED2024 Proceedings: 18th International Technology, Education and Development Conference, Valencia, Spain. 4-6 March, 2024}, booktitle = {INTED2024 Proceedings: 18th International Technology, Education and Development Conference, Valencia, Spain. 4-6 March, 2024}, editor = {G{\´o}mez Chova, Luis and Gonz{\´a}lez Mart{\´i}nez, Chelo and Lees, Joanna}, publisher = {IATED Academy}, isbn = {978-84-09-59215-9}, issn = {2340-1079}, doi = {10.21125/inted.2024.1080}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-71148}, pages = {4195 -- 4205}, abstract = {In the intricate tapestry of the cosmos, where celestial threads weave stories of destiny, an enigmatic deity stands at the intersection of chance and fate — Tyche, the goddess of fortune. In science and probability, coincidence plays a distinctive role in Bayesian Networks (BNs) and Markov Models (MMs). This paper introduces the Tyche algorithm named after the goddess of fortune. The Tyche algorithm is a Markov model designed to generate learning paths in Learning Management Systems (LMSs). A learning path is a type of individualization that personalises the order of learning elements within an LMS course. Learning elements are fundamental components within an LMS course, depicting the learning content in diverse ways. In our case, the learning path tailoring is based on the learner's learning style according to Felder-Silverman Learning Style Model (FSLSM) - an indicator for the ideal pathway and learning element for the learner's optimum learning. The Tyche algorithm offers the advantage to provide students the most suitable learning path. Tyche is a MM structure with various matrices containing transition probabilities depending on the learning style. Nine categories of learning elements defined in a previous survey form the basis of the node structure of the MM. For a generic approach, a survey was designed to obtain the transition probabilities depending on the individual learning style. The survey with more than 100 German students participated is processed with the tool LimeSurvey. Students are asked about their learning style using the Index of Learning Styles (ILS) questionnaire according to Felder-Silverman and about the percentage probabilities of learning elements to get their individual sequence as learning path. The percentages are queried in two different ways. Firstly, the students were asked to provide a sequence of learning elements within each position of the sequence filled with probabilities for all learning elements. Secondly, a learning element is given and the students are asked to indicate which learning element they would work on next. The first way of asking for the probabilities is used to find the start node in the MM, whereas the second approach forms the probability matrices between the nodes within the MM. As result of the survey, the Tyche algorithm presents generic transition probabilities. It improves the learning process of individuals only by asking for their learning style: it generates individual learning paths through the learning elements within an LMS based on the MM explained above by solely getting the answers of the ILS questionnaire as input. In the future, other questionnaires such as BFI-10 for personality traits or LIST-K for learning strategies may offer a more comprehensive input. However, the next step is to evaluate Tyche with about 25 students in a software engineering lecture. This is planned for the year 2024.}, language = {en} } @inproceedings{StauferEzerRoehrletal., author = {Staufer, Susanne and Ezer, Timur and R{\"o}hrl, Simon and Grabinger, Lisa and Hauser, Florian and Nadimpalli, Vamsi Krishna and Antoni, Erika and Mottok, J{\"u}rgen and Schaffer, Josefa}, title = {TYCHE ALGORITHM 2.0: Learning Paths from Questionnaire Responses and Learning Analytics}, series = {ICERI2025 Proceedings}, booktitle = {ICERI2025 Proceedings}, publisher = {IATED}, isbn = {978-84-09-78706-7}, doi = {10.21125/iceri.2025.0831}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-87846}, pages = {2562 -- 2572}, abstract = {The digitalization of learning processes has increased the need for adaptive learning paths tailored individually to learners. A novel algorithm for learning path generation is presented in this paper, namely Tyche 2.0. It extends the original Tyche approach after Staufer et al. - a Markov model for generating learning paths - by integrating additional learner data beyond learning styles (Index of Learning Styles (ILS)), including learning strategies (LIST-K questionnaire), personality traits (BFI-10 questionnaire), and learning analytics captured through screen recordings. In order to be able to use the screen recordings, a heuristic evaluates them. Furthermore, this enhanced algorithm employs Markov models to dynamically generate personalized learning paths. These are based on both questionnaire responses and real-time engagement data, the weights of which undergo dynamic adjustment over time. We made a small evaluation of Tyche 2.0 without the learning analytics influence, which shows that there is room for further improvements. Future research will focus on evaluating whole Tyche 2.0 in another university setting to further improve personalization and user engagement.}, language = {en} } @inproceedings{HauserStauferRoehrletal., author = {Hauser, Florian and Staufer, Susanne and R{\"o}hrl, Simon and Nadimpalli, Vamsi Krishna and Ezer, Timur and Grabinger, Lisa and Mottok, J{\"u}rgen and Falter, Thomas}, title = {LEVERAGING FIVE QUESTIONNAIRES TO ANALYZE STUDENT LEARNING STRATEGIES AND GENERATE AI-POWERED INDIVIDUALIZED LEARNING PATHS}, series = {ICERI2025 Proceedings}, booktitle = {ICERI2025 Proceedings}, editor = {G{\´o}mez Chova, Luis and Gonz{\´a}lez Mart{\´i}nez, Chelo and Lees, Joanna}, publisher = {IATED}, doi = {10.21125/iceri.2025.0658}, pages = {1775 -- 1784}, abstract = {Background: The COVID-19 pandemic has significantly accelerated the shift toward online and blended learning in higher education, placing renewed emphasis on the individualization of learning content to meet diverse student needs. Even high-quality learning materials may fail to engage learners if they do not align with students' personal preferences and learning styles. Identifying these learner preferences, therefore, emerges as a critical challenge. Objectives: This paper presents ongoing work within a larger research project aimed at employing artificial intelligence to recommend optimal learning path for students in specific courses. Beyond mere optimization, the goal is to ensure the best possible fit between learning materials and individual learners. Sample \& Methods: A total of 27 students from technical degree programs took part in this survey. All participation was voluntary, and data were handled in full compliance with GDPR regulations. Although our broader project integrates fine-grained learning analytics from Moodle, the present abstract focuses exclusively on the self-report questionnaire results. Participants completed five instruments: 1. Index of Learning Styles (ILS) 2. LIST-K (Learning and Study Strategies Inventory - Short version) 3. BFI-10 (Big Five Inventory - 10 items) 4. Custom Preferences Instrument, capturing preferences for specific learning elements (e.g. instructional videos, lecture notes, summaries) and basic demographic data 5. Motivational Value Systems Questionnaire (MVSQ), piloted last semester to assess value orientations and motivational drivers Results: Preliminary analyses of the questionnaire data reveal: - Learning Styles (ILS): The majority lean toward the visual learning type (M = 5.740, SD = 3.430). - Learning Strategies (LIST-K): High scores on metacognitive strategies (M = 3.000; SD = 0.520) and collaboration with peers (M = 3.190; SD = 0.540). - Preferred Learning Elements: Summaries, overviews, and self-checks are most favored. - Value Orientations (MVSQ): Students are primarily driven by the pursuit of personal achievement (M = 4.400; SD = 11.140). Conclusion \& Significance: By integrating these five standardized questionnaires, we gain valuable insights into student learning preferences—insights that complement our Moodle analytics in the broader project. Observed trends suggest that learning materials should be concise and designed to facilitate peer interaction and knowledge deepening. These findings will guide the refinement of our AI-driven recommendation engine, enhancing its ability to deliver personalized learning paths that boost both engagement and effectiveness.}, language = {en} } @inproceedings{SchafferEzerRoehrletal., author = {Schaffer, Josefa and Ezer, Timur and R{\"o}hrl, Simon and Hauser, Florian and Staufer, Susanne and Nadimpalli, Vamsi Krishna and Grabinger, Lisa and Antoni, Erika and Mottok, J{\"u}rgen}, title = {EYE TRACKING GLASSES IN EDUCATIONAL SETTINGS: GUIDELINES ON DATA QUALITY}, series = {ICERI2025 Proceedings}, booktitle = {ICERI2025 Proceedings}, editor = {G{\´o}mez Chova, Luis and Gonz{\´a}lez Mart{\´i}nez, Chelo and Lees, Joanna}, publisher = {IATED}, doi = {10.21125/iceri.2025.1419}, pages = {5027 -- 5038}, abstract = {Eye movement modeling examples, so-called EMME videos, are a valuable tool in education, helping learners better understand instructional content. Like conventional educational videos, EMME videos combine text, images, and voiceovers. However, they also display the instructor's or teacher's gaze, guiding learners attention to key elements. Although various approaches exist for creating EMME videos, there is currently no standardised guideline for ensuring gaze data quality. Eye tracking technology is essential to capture gaze behaviour, and in educational settings without a fixed computer monitor - such as when using blackboards or conducting live experiments - the usage of mobile eye tracking glasses is beneficial. An accuracy study is conducted using mobile eye tracking glasses to provide empirical guidance for the development of high-quality educational EMME videos and ensure that the instructor's or teacher's gaze is captured with high precision. The study uses the Tobii Pro Glasses 3 and involves a static and a dynamic setup with 34 participants. To gain insight into the effects of visual impairments on accuracy, we also include participants who wear contact lenses. In the static setup, participants are seated at a desk with a headrest and focus on a poster with nine fixation points. In the dynamic setup, participants are walking in a controlled half-circle around the poster while maintaining focus on its centre. Each setup is performed multiple times under varying lighting levels (300 lux, 700 lux) and distances between participant and poster (80 cm, 120 cm, 180 cm). This enables the simulation of diverse educational environments, including the possibility of a teacher's or instructor's movement. The study results will be evaluated regarding lighting conditions, the distance between the person wearing eye tracking glasses and the object, and possible influences of contact lenses. Based on these findings, favourable conditions for creating EMME videos in educational settings are collected, especially when working without a fixed computer monitor. The results address the outlined research gap by providing instructors and teachers with guidelines enabling them to produce high-quality educational EMME videos.}, language = {en} } @inproceedings{EzerRoehrlMottok, author = {Ezer, Timur and R{\"o}hrl, Simon and Mottok, J{\"u}rgen}, title = {Towards accurate eye tracking: quantifying error in linear pixel-to-degree conversion}, series = {ICERI2025 Proceedings}, booktitle = {ICERI2025 Proceedings}, editor = {G{\´o}mez Chova, Luis and Gonz{\´a}lez Mart{\´i}nez, Chelo and Lees, Joanna}, publisher = {IATED}, doi = {10.21125/iceri.2025.1841}, pages = {6709 -- 6717}, abstract = {Eye tracking has become a powerful tool for analyzing cognitive processes in educational research. Educators and researchers can utilize eye tracking to model learners by determining their gaze patterns. In addition, eye tracking can be used directly for teaching by extracting experts' gaze behavior in certain areas and learning from it. However, eye tracking data is captured in a variety of coordinate systems, which can differ across individual studies. Consequently, algorithms, such as eye movement classifiers, must frequently convert gaze data between different coordinate systems. In particular, the conversion from screen pixels into visual degrees is typically approximated by a linear conversion in current literature and standard practice. However, this approximation introduces inaccuracies, thus potentially obscuring eye movements relevant to educational research. This paper provides a detailed geometric and analytical examination of the commonly applied linear approximation, quantifying its error in comparison to the exact coordinate conversion from screen pixels to angular degrees. For this purpose, the exact conversion formulas are mathematically derived from geometric optics, enabling researchers and educators to use them in their work. Utilizing these derived transformations can improve the robustness of analyses, for example, when detecting subtle eye movements. The present work supports educational research using eye tracking to achieve more insightful findings that may have previously been obscured by measurement inaccuracies. Thereby, we provide an important contribution toward more reliable and valid research and educational practices in eye tracking.}, language = {en} } @inproceedings{AlhulaibiFrauenschlaegerMottok, author = {Alhulaibi, Ayham and Frauenschl{\"a}ger, Tobias and Mottok, J{\"u}rgen}, title = {Towards Post-Quantum-Ready Automated Certificate Lifecycle Management in Operational Technology}, series = {SECURWARE 2025, The Nineteenth International Conference on Emerging Security Information, Systems and Technologies, 26.-30.10.2025, Barcelona}, booktitle = {SECURWARE 2025, The Nineteenth International Conference on Emerging Security Information, Systems and Technologies, 26.-30.10.2025, Barcelona}, publisher = {IARIA}, isbn = {978-1-68558-306-4}, pages = {112 -- 116}, abstract = {Operational Technology (OT) systems increasingly depend on robust and automated certificate lifecycle management to maintain secure operations across long device lifespans and constrained environments. As quantum-capable adversaries emerge, these systems must also support cryptographic agility and prepare for a seamless transition to Post-Quantum Cryptography (PQC). This work presents a crypto-agile, post-quantum-ready testbed architecture that extends existing standards, such as Enrollment over Secure Transport (EST) and Bootstrapping Remote Secure Key Infrastructure (BRSKI), to support hybrid certificates, hardware-based key storage, and protocol flexibility for device bootstrapping and certificate management. A work-in-progress prototype implementation demonstrates support for both traditional and PQC algorithms across device types. Planned evaluations target performance on constrained devices, PQC readiness, and compatibility with alternative protocols. The system lays a foundation for secure and standards-compliant certificate management in future-proof OT deployments.}, language = {en} } @inproceedings{NadimpalliMaierStauferetal., author = {Nadimpalli, Vamsi Krishna and Maier, Robert and Staufer, Susanne and R{\"o}hrl, Simon and Ezer, Timur and Grabinger, Lisa and Hauser, Florian and Mottok, J{\"u}rgen}, title = {EXPERT SURVEYS TO REAL TIME ADAPTATION OF LEARNING PATHS}, series = {ICERI2025 Proceedings}, booktitle = {ICERI2025 Proceedings}, editor = {G{\´o}mez Chova, Luis and Gonz{\´a}lez Mart{\´i}nez, Chelo and Lees, Joanna}, publisher = {IATED}, doi = {10.21125/iceri.2025.1571}, pages = {5677 -- 5687}, abstract = {Learning management systems rely on adaptive algorithms that use learner preferences to personalize the instructional content in form of learning paths. However, these preferences are uncertain in nature, and change over time. The present solutions are either static or purely data-driven missing the dynamic adaption to changes in the preferences and infusion of pedagogical nuances respectively. This paper introduces an extended variant of Nestor, our Bayesian network engine that models personality traits, learning styles, and learning strategies. This extension overlays a lightweight rule-based mechanism whose "secret recipe'' lies in the infusion of expert-derived weights adapting learning paths dynamically whenever a learner selects new material in Moodle. To parameterise these rules, we conducted a structured survey with 12 hand-picked professors and researchers in educational science. Each expert responded to 4 demographic items and 12 item that are distributed across algorithm-overview, scenario-based, and example-based categories, thereby supplying the nuanced weightings that result the personalised recommendations. This hybrid system (Nestor plus the expert-infused rule layer) operated during the winter term of 2025. 18 students completed an end-of-term questionnaire. Although their learning gains were not recorded, the majority of respondents reported positive or neutral experiences with the dynamically adapted learning paths. The {Future work} will compare three engines: (i) the present dynamic, expert-infused rule layer on top of the static Bayesian network, (ii) purely data-driven machine-learning models that neglect expert weighting, and (iii) the original static-adaptation Bayesian network without rules. Analyses of log files, intermediate satisfaction surveys, and pre/post term surveys will clarify whether this on-the-fly adaptation and pedagogical nuance lead to measurable learning benefits.}, language = {en} } @inproceedings{NadimpalliHauserBittneretal., author = {Nadimpalli, Vamsi Krishna and Hauser, Florian and Bittner, Dominik and Grabinger, Lisa and Staufer, Susanne and Mottok, J{\"u}rgen}, title = {Systematic Literature Review for the Use of AI Based Techniques in Adaptive Learning Management Systems}, series = {Proceedings of the 5th European Conference on Software Engineering Education, Seeon/Germany, June 19 - 21, 2023}, booktitle = {Proceedings of the 5th European Conference on Software Engineering Education, Seeon/Germany, June 19 - 21, 2023}, editor = {Mottok, J{\"u}rgen}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-9956-2}, doi = {10.1145/3593663.3593681}, pages = {83 -- 92}, abstract = {Nowadays, learning management systems are widely employed in all educational institutions to instruct students as a result of the increasing in online usage. Today's learning management systems provide learning paths without personalizing them to the characteristics of the learner. Therefore, research these days is concentrated on employing AI-based strategies to personalize the systems. However, there are many different AI algorithms, making it challenging to determine which ones are most suited for taking into account the many different features of learner data and learning contents. This paper conducts a systematic literature review in order to discuss the AI-based methods that are frequently used to identify learner characteristics, organize the learning contents, recommend learning paths, and highlight their advantages and disadvantages.}, language = {en} } @misc{Bugert, author = {Bugert, Flemming}, title = {Applying Ariadne: Dataset on Learning Styles and Moodle-Based Learning Paths [Data set]}, doi = {10.5281/zenodo.12594911}, abstract = {This dataset contains information queried from 22 students inside a Moodle based learning management system during the winter term 2023/24 at a German university. Abstract With the use of learning management systems students benefit from being recommended suitable learning elements based on their individual needs. In doing so, recommendation algorithms are applied which first query the student's learning style. To improve the recommendation of learning elements a continuous analysis of the individual's learning style is required. A frequent questionnaire assessment would however be too time consuming. Instead, in a prior study an algorithm has been designed to identify changes in learning styles from the student's selection of learning elements. In this paper, we investigate the functionality of that algorithm by applying it on real student data. In particular, we test if the algorithm correctly indicates changes in learning styles. The utilised data is collected in our learning management system. To be precise, the data is obtained from 22 students enrolled in a software engineering course during the winter term of 2023/24. The data comprises two types of information for each student: 1) learning style collected at the start and end of the term, and 2) the user's actual selection of learning elements inside the learning management system. The uniqueness of this study lies in the data and the evaluation strategy based on it. Having the learning style at the end of the semester period as ground truth allows us to test if the algorithm operates correctly with actual user data from our learning management system. The results validate the behaviour of our algorithm, yet they strongly suggest the need for an adaptation. Further research is required on how to parameterise the underlying models.}, language = {en} } @inproceedings{BittnerEzerGrabingeretal., author = {Bittner, Dominik and Ezer, Timur and Grabinger, Lisa and Hauser, Florian and Mottok, J{\"u}rgen}, title = {Unveiling the secrets of learning styles: decoding eye movements via machine learning}, series = {Proceedings of the 16th annual International Conference of Education, Research and Innovation (ICERI 2023), Seville, Spain, 11/13/2023 - 11/14/2023}, booktitle = {Proceedings of the 16th annual International Conference of Education, Research and Innovation (ICERI 2023), Seville, Spain, 11/13/2023 - 11/14/2023}, editor = {G{\´o}mez Chova, Luis and Gonz{\´a}lez Mart{\´i}nez, Chelo and Lees, Joanna}, publisher = {IATED}, isbn = {978-84-09-55942-8}, doi = {10.21125/iceri.2023.1291}, pages = {5153 -- 5162}, abstract = {Universities are faced with a rising number of dropouts in recent years. This is largely due to students' limited capability of finding individual learning paths through various course materials. However, a possible solution to this problem is the introduction of adaptive learning management systems, which recommend tailored learning paths to students - based on their individual learning styles. For the classification of learning styles, the most commonly used methods are questionnaires and learning analytics. Nevertheless, both methods are prone to errors: questionnaires may give superficial answers due to lack of time or motivation, while learning analytics do not reflect offline learning behavior. This paper proposes an alternative approach to classify students' learning styles by integrating eye tracking in combination with Machine Learning (ML) algorithms. Incorporating eye tracking technology into the classification process eliminates the potential problems arising from questionnaires or learning analytics by providing a more objective and detailed analysis of the subject's behavior. Moreover, this approach allows for a deeper understanding of subconscious processes and provides valuable insights into the individualized learning preferences of students. In order to demonstrate this approach, an eye tracking study is conducted with 117 participants using the Tobii Pro Fusion. Using qualitative and quantitative analyses, certain patterns in the subjects' gaze behavior are assigned to their learning styles given by the validated Index of Learning Styles (ILS) questionnaire. In short, this paper presents an innovative solution to the challenges associated with classifying students' learning styles. By combining eye tracking data with ML algorithms, an accurate and insightful understanding of students' individual learning paths can be achieved, ultimately leading to improved educational outcomes and reduced dropout rates.}, language = {en} } @article{GrabingerHauserWolffetal., author = {Grabinger, Lisa and Hauser, Florian and Wolff, Christian and Mottok, J{\"u}rgen}, title = {On Eye Tracking in Software Engineering}, series = {SN Computer Science}, volume = {5}, journal = {SN Computer Science}, number = {6}, publisher = {Springer}, address = {Singapore}, issn = {2661-8907}, doi = {10.1007/s42979-024-03045-3}, abstract = {Eye tracking is becoming more and more important as a research method within the field of software engineering (SE). Existing meta-analyses focus on the design or conduct of SE eye tracking studies rather than the analysis phase. This article attempts to fill this gap; it presents a systematic literature review of eye tracking studies in the field of SE—focusing mainly on the data analysis methods used. From the IEEE Xplore and ACM digital libraries we gather 125 papers up to the first quarter of 2024. Detailed evaluation provides information on the number of papers that use specific methods of analysis (i.e., descriptive or inferential statistics, and gaze visualization) or settings (e.g., sample size, technical setup, and selected aspects of research design). With the data obtained we can infer the popularity of specific analysis methods in the field. Those results enable efficient work on data analysis tools or education of aspiring researchers and can serve as basis for standardization or guidelines within the community—providing for methods to include as well as current inconsistencies.}, language = {en} } @inproceedings{HammerMottokKrauseetal., author = {Hammer, Pascal and Mottok, J{\"u}rgen and Krause, Veronika and Probst, Tobias}, title = {Approach for High-Performance Random Number Generators for Critical Systems}, series = {Proceeding of the 12th European Congress on Embedded Real Time Software and Systems (ERTS2024) , Toulouse, 11-12 June 2024}, booktitle = {Proceeding of the 12th European Congress on Embedded Real Time Software and Systems (ERTS2024) , Toulouse, 11-12 June 2024}, doi = {10.5281/zenodo.14848832}, pages = {9}, abstract = {In times of digitalization, the encryption and signing of sensitive data is becoming increasingly important. These cryptographic processes require large quantities of high-quality random numbers. Which is why a high-performance random number generator (RNG) is to be developed. For this purpose, existing concepts of RNGs and application standards are first analyzed. The proposed approach is to design a physical true random number generator (PTRNG) with a high output of random numbers. Based on this, the development begins with the analog part of the RNG, the noise signal source and a suitable amplifier for the analog noise signal. Therefore, a special noise diode from Noisecom and an amplifier from NXP were chosen and analyzed in different measurements. From the results of the measurements, it can be concluded that both components are suitable for use in the RNG.}, language = {en} }