@article{RoldanMoralisDendorferetal., author = {Rold{\´a}n, J.C. and Moralis, A. and Dendorfer, Sebastian and Witte, J. and Reicheneder, C.}, title = {Controlled central advancement of the midface after Le Fort III osteotomy by a 3-point skeletal anchorage}, series = {The Journal of craniofacial surgery}, volume = {22}, journal = {The Journal of craniofacial surgery}, number = {6}, doi = {10.1097/SCS.0b013e318231fc8d}, pages = {2384 -- 2386}, abstract = {A 3-point skeletal anchorage with taping screws for distraction osteogenesis after a Le Fort III osteotomy was applied for the first time in a severely mentally impaired patient where intraoral devices had to be avoided. All 3-force application points included the center of resistance, which allowed an optimal control on the resulting moment. A novel device for skeletal long-term retention into the nasal dorsum prevented a relapse, whereas adjustment of the midface position was observed. Fusioned three-dimensional computed tomography analysis revealed real movements not accessible by a conventional cephalometry.}, subject = {Mund-Kiefer-Gesichts-Chirurgie}, language = {en} } @article{PhilippdeSomerFoltanetal., author = {Philipp, Alois and de Somer, Filip and Foltan, Maik and Bredthauer, Andre and Krenkel, Lars and Zeman, Florian and Lehle, Karla}, title = {Life span of different extracorporeal membrane systems for severe respiratory failure in the clinical practice}, series = {PLOS ONE}, volume = {13}, journal = {PLOS ONE}, number = {6}, publisher = {PLOS}, doi = {10.1371/journal.pone.0198392}, pages = {1 -- 10}, abstract = {Over the past decade, veno-venous extracorporeal membrane oxygenation (vvECMO) has been increasingly utilized in respiratory failure in patients. This study presents our institution´s experience focusing on the life span of ECMO systems reflecting the performance of a particular system. A retrospective review of our ECMO database identified 461 adult patients undergoing vvECMO (2010-2017). Patients that required more than one system and survived the first exchange >24 hours (n = 139) were included. Life span until the first exchange and exchange criteria were analyzed for all systems (PLS, Cardiohelp HLS-set, both Maquet Cardiopulmonary, Rastatt, Germany; Deltastream/Hilite7000LT, iLA-activve, Xenios/NovaLung, Heilbronn, Germany; ECC.O5, LivaNova, Mirandola, Italy). At our ECMO center, the frequency of a system exchange was 30\%. The median (IQR) life span was 9 (6-12) days. There was no difference regarding the different systems (p = 0.145 and p = 0.108, respectively). However, the Deltastream systems were exchanged more frequently due to elective technical complications (e. g. worsened gas transfer, development of coagulation disorder, increased bleedings complications) compared to the other exchanged systems (p = 0.013). In summary, the used ECMO systems are safe and effective for acute respiratory failure. There is no evidence for the usage of a specific system. Only the increased predictability of an imminent exchange preferred the usage of a Deltastream system. However, the decision to use a particular system should not depend solely on the possible criteria for an exchange.}, language = {en} } @article{DiermeierSindersbergerKrenkeletal., author = {Diermeier, Andreas and Sindersberger, Dirk and Krenkel, Lars and Rosell, X. C. and Monkman, Gareth J.}, title = {Controllable Magnetoactive Polymer Conduit}, series = {The Open Mechanical Engineering Journal}, volume = {12}, journal = {The Open Mechanical Engineering Journal}, number = {1}, publisher = {Bentham}, pages = {192 -- 200}, abstract = {Objective: Magneto-active Polymers (MAP) are smart materials whose mechanical characteristics, such as elastic and shear moduli, may be controllable by means of an externally applied magnetic field. Methods: Various additives may be used to influence the characteristics of the polymer matrix whilst a suspension of soft and/or hard magnetic particles determine the magnetic properties of the composite. Both pre-cure and post-cure magnetization is possible. Results: A range of control strategies have been investigated for evaluation of the system using fluids of differing kinematic viscosity. Conclusion: Depending on the degree of magnetic field homogeneity, magneto-deformation and magnetostriction contribute to MAP actuation. This paper presents a novel application in the form of a peristaltic MAP tube system, applicable to flow control and pumping of hemorheological fluids in blood circulatory systems for biomedical research purposes.}, language = {en} } @article{StelzerKrenkel, author = {Stelzer, Vera and Krenkel, Lars}, title = {2D numerical investigations derived from a 3D dragonfly wing captured with a high-resolution micro-CT}, series = {Technology and health care : official journal of the European Society for Engineering and Medicine}, volume = {30}, journal = {Technology and health care : official journal of the European Society for Engineering and Medicine}, number = {1}, publisher = {IOS Press}, doi = {10.3233/THC-219010}, pages = {283 -- 289}, abstract = {BACKGROUND: Due to their corrugated profile, dragonfly wings have special aerodynamic characteristics during flying and gliding. OBJECTIVE: The aim of this study was to create a realistic 3D model of a dragonfly wing captured with a high-resolution micro-CT. To represent geometry changes in span and chord length and their aerodynamic effects, numerical investigations are carried out at different wing positions. METHODS: The forewing of a Camacinia gigantea was captured using a micro-CT. After the wing was adapted an error-free 3D model resulted. The wing was cut every 5 mm and 2D numerical analyses were conducted in Fluent® 2020 R2 (ANSYS, Inc., Canonsburg, PA, USA). RESULTS: The highest lift coefficient, as well as the highest lift-to-drag ratio, resulted at 0 mm and an angle of attack (AOA) of 5∘. At AOAs of 10∘ or 15∘, the flow around the wing stalled and a K{\´a}rm{\´a}n vortex street behind the wing becomes CONCLUSIONS: The velocity is higher on the upper side of the wing compared to the lower side. The pressure acts vice versa. Due to the recirculation zones that are formed in valleys of the corrugation pattern the wing resembles the form of an airfoil.}, language = {en} } @article{SchecklmannSchmausserKlingeretal., author = {Schecklmann, Martin and Schmausser, Maximilian and Klinger, Felix and Kreuzer, Peter M. and Krenkel, Lars and Langguth, Berthold}, title = {Resting motor threshold and magnetic field output of the figure-of-8 and the double-cone coil}, series = {scientific reports}, volume = {10}, journal = {scientific reports}, number = {1}, publisher = {Nature}, doi = {10.1038/s41598-020-58034-2}, abstract = {The use of the double-cone (DC) coil in transcranial magnetic stimulation (TMS) is promoted with the notion that the DC coil enables stimulation of deeper brain areas in contrast to conventional figure-of-8 (Fo8) coils. However, systematic comparisons of these two coil types with respect to the spatial distribution of the magnetic field output and also to the induced activity in superficial and deeper brain areas are limited. Resting motor thresholds of the left and right first dorsal interosseous (FDI) and tibialis anterior (TA) were determined with the DC and the Fo8 coil in 17 healthy subjects. Coils were orientated over the corresponding motor area in an angle of 45 degrees for the hand area with the handle pointing in posterior direction and in medio-lateral direction for the leg area. Physical measurements were done with an automatic gantry table using a Gaussmeter. Resting motor threshold was higher for the leg area in contrast to the hand area and for the Fo8 in contrast to the DC coil. Muscle by coil interaction was also significant providing higher differences between leg and hand area for the Fo8 (about 27\%) in contrast to the DC coil (about 15\%). Magnetic field strength was higher for the DC coil in contrast to the Fo8 coil. The DC coil produces a higher magnetic field with higher depth of penetration than the figure of eight coil.}, language = {en} } @article{TauwaldMichelBrandtetal., author = {Tauwald, Sandra Melina and Michel, Johanna and Brandt, Marie and Vielsmeier, Veronika and Stemmer, Christian and Krenkel, Lars}, title = {Experimental studies and mathematical modeling of the viscoelastic rheology of tracheobronchial mucus from respiratory healthy patients}, series = {Multidisciplinary Respiratory Medicine}, volume = {18}, journal = {Multidisciplinary Respiratory Medicine}, number = {1}, publisher = {PAGEPress}, address = {Pavia, Italy}, issn = {2049-6958}, doi = {10.4081/mrm.2023.923}, pages = {12}, abstract = {BACKGROUND: Tracheobronchial mucus plays a crucial role in pulmonary function by providing protection against inhaled pathogens. Due to its composition of water, mucins, and other biomolecules, it has a complex viscoelastic rheological behavior. This interplay of both viscous and elastic properties has not been fully described yet. In this study, we characterize the rheology of human mucus using oscillatory and transient tests. Based on the transient tests, we describe the material behavior of mucus under stress and strain loading by mathematical models. METHODS: Mucus samples were collected from clinically used endotracheal tubes. For rheological characterization, oscillatory amplitude-sweep and frequency-sweep tests, and transient creep-recovery and stress-relaxation tests were performed. The results of the transient test were approximated using the Burgers model, the Weibull distribution, and the six-element Maxwell model. The three-dimensional microstructure of the tracheobronchial mucus was visualized using scanning electron microscope imaging. RESULTS: Amplitude-sweep tests showed storage moduli ranging from 0.1 Pa to 10000 Pa and a median critical strain of 4 \%. In frequency-sweep tests, storage and loss moduli increased with frequency, with the median of the storage modulus ranging from 10 Pa to 30 Pa, and the median of the loss modulus from 5 Pa to 14 Pa. The Burgers model approximates the viscoelastic behavior of tracheobronchial mucus during a constant load of stress appropriately (R2 of 0.99), and the Weibull distribution is suitable to predict the recovery of the sample after the removal of this stress (R2 of 0.99). The approximation of the stress-relaxation test data by a six-element Maxwell model shows a larger fit error (R2 of 0.91). CONCLUSIONS: This study provides a detailed description of all process steps of characterizing the rheology of tracheobronchial mucus, including sample collection, microstructure visualization, and rheological investigation. Based on this characterization, we provide mathematical models of the rheological behavior of tracheobronchial mucus. These can now be used to simulate mucus flow in the respiratory system through numerical approaches.}, language = {en} } @article{BirkenmaierDorniaLehleetal., author = {Birkenmaier, Clemens and Dornia, Christian and Lehle, Karla and M{\"u}ller, Thomas and Gruber, Michael and Philipp, Alois and Krenkel, Lars}, title = {Analysis of Thrombotic Deposits in Extracorporeal Membrane Oxygenators by High-resolution Microcomputed Tomography: A Feasibility Study}, series = {ASAIO Journal / American Society for Artificial Internal Organs}, volume = {66}, journal = {ASAIO Journal / American Society for Artificial Internal Organs}, number = {8}, publisher = {Lippincott Williams \& Wilkins}, issn = {1538-943X}, doi = {10.1097/MAT.0000000000001089}, pages = {922 -- 928}, abstract = {Coagulative disorders, especially clotting during extracorporeal membrane oxygenation, are frequent complications. Direct visualization and analysis of deposits in membrane oxygenators using computed tomography (CT) may provide an insight into the underlying mechanisms causing thrombotic events. However, the already established multidetector CT1 (MDCT) method shows major limitations. Here, we demonstrate the feasibility of applying industrial micro-CT (μCT) to circumvent these restrictions. Three clinically used membrane oxygenators were investigated applying both MDCT and μCT. The scans were analyzed in terms of clot volume and local clot distribution. As validation, the clot volume was also determined from the fluid volume, which could be filled into the respective used oxygenator compared to a new device. In addition, cross-sectional CT images were compared with crosscut oxygenators. Based on the μCT findings, a morphological measure (sphericity) for assessing clot structures in membrane oxygenators is introduced. Furthermore, by comparing MDCT and μCT results, an augmentation of the MDCT method is proposed, which allows for improved clot volume determination in a clinical setting.}, language = {en} } @article{TauwaldErzingerQuadrioetal., author = {Tauwald, Sandra Melina and Erzinger, Florian and Quadrio, Maurizio and R{\"u}tten, Markus and Stemmer, Christian and Krenkel, Lars}, title = {Tomo-PIV in a patient-specific model of human nasal cavities: a methodological approach}, series = {Measurement Science and Technology}, volume = {35}, journal = {Measurement Science and Technology}, number = {5}, publisher = {IOP Publishing}, doi = {10.1088/1361-6501/ad282c}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-70393}, abstract = {The human nose serves as the primary gateway for air entering the respiratory system and plays a vital role in breathing. Nasal breathing difficulties are a significant health concern, leading to substantial healthcare costs for patients. Understanding nasal airflow dynamics is crucial for comprehending respiratory mechanisms. This article presents a detailed study using tomo-Particle Image Velocimetry (PIV) to investigate nasal airflow dynamics while addressing its accuracy. Embedded in the OpenNose project, the work described aims to provide a validation basis for different numerical approaches to upper airway flow. The study includes the manufacturing of a transparent silicone model based on a clinical CT scan, refractive index matching to minimize optical distortions, and precise flow rate adjustments based on physiological breathing cycles. This method allows for spatial high-resolution investigations in different regions of interest within the nasopharynx during various phases of the breathing cycle. The results demonstrate the accuracy of the investigations, enabling detailed analysis of flow structures and gradients. This spatial high-resolution tomo-PIV approach provides valuable insights into the complex flow phenomena occurring during the physiological breathing cycle in the nasopharynx. The study's findings contribute to advancements in non-free-of-sight experimental flow investigation of complex cavities under nearly realistic conditions. Furthermore, reliable and accurate experimental data is crucial for properly validating numerical approaches that compute this patient-specific flow for clinical purposes.}, language = {en} } @article{LingelHausPaschkeetal., author = {Lingel, Maximilian P. and Haus, Moritz and Paschke, Lukas and Foltan, Maik and Lubnow, Matthias and Gruber, Michael and Krenkel, Lars and Lehle, Karla}, title = {Clinical relevance of cell-free DNA during venovenous extracorporeal membrane oxygenation}, series = {Artificial organs}, volume = {47}, journal = {Artificial organs}, number = {11}, publisher = {Wiley}, issn = {1525-1594}, doi = {10.1111/aor.14616}, pages = {1720 -- 1731}, abstract = {BACKGROUND: Thrombosis remains a critical complication during venovenous extracorporeal membrane oxygenation (VV ECMO). The involvement of neutrophil extracellular traps (NETs) in thrombogenesis has to be discussed. The aim was to verify NETs in the form of cell-free DNA (cfDNA) in the plasma of patients during ECMO. METHODS: A fluorescent DNA-binding dye (QuantifFluor®, Promega) was used to detect cell-free DNA in plasma samples. cfDNA concentrations from volunteers (n = 21) and patients (n = 9) were compared and correlated with clinical/technical data before/during support, ECMO end and time of a system exchange. RESULTS: Before ECMO, patients with a median (IQR) age of 59 (51/63) years, SOFA score of 11 (10/15), and ECMO run time of 9.0 (7.0/19.5) days presented significantly higher levels of cfDNA compared to volunteers (6.4 (5.8/7.9) ng/μL vs. 5.9 (5.4/6.3) ng/μL; p = 0.044). Within 2 days after ECMO start, cfDNA, inflammatory, and hemolysis parameters remained unchanged, while platelets decreased (p = 0.005). After ECMO removal at the end of therapy, cfDNA, inflammation, and coagulation data (except antithrombin III) remained unchanged. The renewal of a system resulted in known alterations in fibrinogen, d-dimers, and platelets, while cfDNA remained unchanged. CONCLUSION: Detection of cfDNA in plasma of ECMO patients was not an indicator of acute and circuit-induced thrombogenesis.}, language = {en} } @article{FoltanDinhGruberetal., author = {Foltan, Maik and Dinh, D. and Gruber, Michael and M{\"u}ller, Thomas and Hart, C. and Krenkel, Lars and Schmid, C. and Lehle, Karla}, title = {Incidence of neutrophil extracellular traps (NETs) in different membrane oxygenators: pilot in vitro experiments in commercially available coated membranes}, series = {Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs}, journal = {Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs}, doi = {10.1007/s10047-024-01486-4}, abstract = {Neutrophil extracellular traps (NETs) were detected in blood samples and in cellular deposits of oxygenator membranes during extracorporeal membrane oxygenation (ECMO) therapy and may be responsible for thrombogenesis. The aim was to evaluate the effect of the base material of gas fiber (GF, polymethylpentene) and heat exchange (HE) membranes and different antithrombogenic coatings on isolated granulocytes from healthy volunteers under static culture conditions. Contact of granulocytes with membranes from different ECMO oxygenators (with different surface coatings) and uncoated-GFs allowed detection of adherent cells and NETotic nuclear structures (normal, swollen, ruptured) using nuclear staining. Flow cytometry was used to identify cell activation (CD11b/CD62L, oxidative burst) of non-adherent cells. Uncoated-GFs were used as a reference. Within 3 h, granulocytes adhered to the same extent on all surfaces. In contrast, the ratio of normal to NETotic cells was significantly higher for uncoated-GFs (56-83\%) compared to all coated GFs (34-72\%) (p < 0.001) with no difference between the coatings. After material contact, non-adherent cells remained vital with unchanged oxidative burst function and the proportion of activated cells remained low. The expression of activation markers was independent of the origin of the GF material. In conclusion, the polymethylpentene surfaces of the GFs already induce NET formation. Antithrombogenic coatings can already reduce the proportion of NETotic nuclei. However, it cannot be ruled out that NET formation can induce thrombotic events. Therefore, new surfaces or coatings are required for future ECMO systems and long-term implantable artificial lungs.}, language = {en} } @article{SteigerFoltanPhilippetal., author = {Steiger, Tamara and Foltan, Maik and Philipp, Alois and M{\"u}ller, Thomas and Gruber, Michael and Bredthauer, Andre and Krenkel, Lars and Birkenmaier, Clemens and Lehle, Karla}, title = {Accumulations of von Willebrand factor within ECMO oxygenators: Potential indicator of coagulation abnormalities in critically ill patients?}, series = {Artificial Organs}, volume = {43}, journal = {Artificial Organs}, number = {11}, publisher = {Wiley}, address = {Hoboken}, issn = {1525-1594}, doi = {10.1111/aor.13513}, pages = {1065 -- 1076}, abstract = {Clot formation within membrane oxygenators (MOs) remains a critical problem during extracorporeal membrane oxygenation (ECMO). The composition of the clots-in particular, the presence of von Willebrand factor (vWF)-may be an indicator for prevalent nonphysiological flow conditions, foreign body reactions, or coagulation abnormalities in critically ill patients. Mats of interwoven gas exchange fibers from randomly collected MOs (PLS, Maquet, Rastatt, Germany) of 21 patients were stained with antibodies (anti-vWF and anti-P-selectin) and counterstained with 4 ',6-diamidino-2-phenylindole. The extent of vWF-loading was correlated with patient and technical data. While 12 MOs showed low vWF-loadings, 9 MOs showed high vWF-loading with highest accumulations close to crossing points of adjacent gas fibers. The presence and the extent of vWF-fibers/"cobwebs," leukocytes, platelet-leukocyte aggregates (PLAs), and P-selectin-positive platelet aggregates were independent of the extent of vWF-loading. However, the highly loaded MOs were obtained from patients with a significantly elevated SOFA score, severe thrombocytopenia, and persistent liver dysfunction. The coagulation abnormalities of these critically ill patients may cause an accumulation of the highly thrombogenic and elongated high-molecular-weight vWF multimers in the plasma which will be trapped in the MOs during the ECMO therapy.}, language = {en} } @article{HausFoltanPhilippetal., author = {Haus, Moritz and Foltan, Maik and Philipp, Alois and M{\"u}ller, Thomas and Lingel, Maximilian P. and Krenkel, Lars and Gruber, Michael and Lehle, Karla}, title = {Neutrophil extracellular traps -a potential trigger for the development of thrombocytopenia during extracorporeal membrane oxygenation}, volume = {15}, publisher = {frontiers}, doi = {10.3389/fimmu.2024.1339235}, abstract = {Neutrophil extracellular traps (NETs) have recently emerged as a potential link between inflammation, immunity, and thrombosis, as well as other coagulation disorders which present a major challenge in the context of extracorporeal membrane oxygenation (ECMO). By examining blood from ECMO patients for NETs and their precursors and correlating them with clinical and laboratory biomarkers of coagulation and inflammation, this study aims to evaluate the association between the presence of NETs in the bloodstream of ECMO patients and the development of potentially severe coagulation disorders during ECMO therapy. Therefore, blood samples were collected from healthy volunteers (n=13) and patients receiving veno-venous (VV) ECMO therapy (n=10). To identify NETs and their precursors, DNA and myeloperoxidase as well as granulocyte marker CD66b were visualized simultaneously by immunofluorescence staining in serial blood smears. Differentiation of DNA-containing objects and identification of NETs and their precursors was performed semiautomatically by a specific algorithm using the shape and size of DNA staining and the intensity of MPO and CD66b signal. Neutrophil extracellular traps and their precursors could be detected in blood smears from patients requiring VV ECMO. Compared to volunteers, ECMO patients presented significantly higher rates of NETs and NET precursors as well as an increased proportion of neutrophil granulocytes in all detected nucleated cells. A high NET rate prior to the initiation of ECMO therapy was associated with both increased iL-6 and TNF-α levels as an expression of a high cytokine burden. These patients with increased NET release also presented an earlier and significantly more pronounced decrease in platelet counts and ATIII activity following initiation of therapy compared with patients with less elevated NETs. These findings provide further indications for the development of immune-mediated acquired thrombocytopenia in ECMO patients.}, language = {en} } @article{DeuterHajBrawanskietal., author = {Deuter, Daniel and Haj, Amer and Brawanski, Alexander and Krenkel, Lars and Schmidt, Nils Ole and Doenitz, Christian}, title = {Fast simulation of hemodynamics in intracranial aneurysms for clinical use}, series = {Acta Neurochirurgica}, volume = {167}, journal = {Acta Neurochirurgica}, publisher = {Springer}, doi = {10.1007/s00701-025-06469-9}, pages = {14}, abstract = {BACKGROUND: A widely accepted tool to assess hemodynamics, one of the most important factors in aneurysm pathophysiology, is Computational Fluid Dynamics (CFD). As current workflows are still time consuming and difficult to operate, CFD is not yet a standard tool in the clinical setting. There it could provide valuable information on aneurysm treatment, especially regarding local risks of rupture, which might help to optimize the individualized strategy of neurosurgical dissection during microsurgical aneurysm clipping. METHOD: We established and validated a semi-automated workflow using 3D rotational angiographies of 24 intracranial aneurysms from patients having received aneurysm treatment at our centre. Reconstruction of vessel geometry and generation of volume meshes was performed using AMIRA 6.2.0 and ICEM 17.1. For solving ANSYS CFX was used. For validational checks, tests regarding the volumetric impact of smoothing operations, the impact of mesh sizes on the results (grid convergence), geometric mesh quality and time tests for the time needed to perform the workflow were conducted in subgroups. RESULTS: Most of the steps of the workflow were performed directly on the 3D images requiring no programming experience. The workflow led to final CFD results in a mean time of 22 min 51.4 s (95\%-CI 20 min 51.562 s-24 min 51.238 s, n = 5). Volume of the geometries after pre-processing was in mean 4.46\% higher than before in the analysed subgroup (95\%-CI 3.43-5.50\%). Regarding mesh sizes, mean relative aberrations of 2.30\% (95\%-CI 1.51-3.09\%) were found for surface meshes and between 1.40\% (95\%-CI 1.07-1.72\%) and 2.61\% (95\%-CI 1.93-3.29\%) for volume meshes. Acceptable geometric mesh quality of volume meshes was found. CONCLUSIONS: We developed a semi-automated workflow for aneurysm CFD to benefit from hemodynamic data in the clinical setting. The ease of handling opens the workflow to clinicians untrained in programming. As previous studies have found that the distribution of hemodynamic parameters correlates with thin-walled aneurysm areas susceptible to rupture, these data might be beneficial for the operating neurosurgeon during aneurysm surgery, even in acute cases.}, language = {en} } @article{LehlePhilippKrenkeletal., author = {Lehle, Karla and Philipp, Alois and Krenkel, Lars and Gruber, Michael and Hiller, Karl-Anton and M{\"u}ller, Thomas and Lubnow, Matthias}, title = {Thrombocytopenia During Venovenous Extracorporeal Membrane Oxygenation in Adult Patients With Bacterial, Viral, and COVID-19 Pneumonia}, series = {ASAIO Journal}, journal = {ASAIO Journal}, publisher = {Wolters Kluwer}, issn = {1058-2916}, doi = {10.1097/MAT.0000000000002383}, abstract = {Contact of blood with artificial surfaces triggers platelet activation. The aim was to compare platelet kinetics after venovenous extracorporeal membrane oxygenation (V-V ECMO) start and after system exchange in different etiologies of acute lung failure. Platelet counts and coagulation parameters were analyzed from adult patients with long and exchange-free (≥8 days) ECMO runs (n = 330) caused by bacterial (n = 142), viral (n = 76), or coronavirus disease 2019 (COVID-19) (n = 112) pneumonia. A subpopulation requiring a system exchange and with long, exchange-free runs of the second oxygenator (≥7 days) (n = 110) was analyzed analogously. Patients with COVID-19 showed the highest platelet levels before ECMO implantation. Independent of the underlying disease and ECMO type, platelet counts decreased significantly within 24 hours and reached a steady state after 5 days. In the subpopulation, at the day of a system exchange, platelet counts were lower compared with ECMO start, but without differences between underlying diseases. Subsequently, platelets remained unchanged in the bacterial pneumonia group, but increased in the COVID-19 and viral pneumonia groups within 2-4 days, whereas D-dimers decreased and fibrinogen levels increased. Thus, overall platelet counts on V-V ECMO show disease-specific initial dynamics followed by an ongoing consumption by the ECMO device, which is not boosted by new artificial surfaces after a system exchange.}, language = {en} }