@article{KuettnerRathsFischeretal., author = {Kuettner, Andreas and Raths, Max and Fischer, Samuel and Laumer, Tobias}, title = {Heat staking of polymer parts generated by fused layer modeling}, series = {The International Journal of Advanced Manufacturing Technology}, volume = {128}, journal = {The International Journal of Advanced Manufacturing Technology}, publisher = {Springer Nature}, doi = {10.1007/s00170-023-11850-y}, pages = {547 -- 562}, abstract = {Heat staking is a joining technology by which thermoplastic pins are formed by force and temperature to create a form- and force-fitting connection between components. This paper examines the characteristics of 3D printed pins in comparison to conventionally turned pins for heat staking applications. The 3D printed pins are created using fused layer modeling, with variations in horizontal and vertical building directions, as well as different layer thicknesses. The study investigates the impact of significant factors on the heat staking process, including the forming force and temperature. Tensile tests, micrographs, and micro-CT measurements were conducted to determine the properties of the heat-staked joints. Additionally, a stage plan was developed to enhance the understanding of the forming process of both printed and conventionally turned materials. The findings suggest that, under specific process parameters, 3D printed pins exhibit comparable strength to conventionally manufactured pins. The research also demonstrates that the anisotropy resulting from the layer-by-layer construction of the pins significantly influences the strength of the connection. Furthermore, the study reveals that 3D printed pins exhibit good forming accuracy during the heat staking process, and the cavities formed during printing can be substantially reduced.}, language = {en} } @article{RathsBauerKuettneretal., author = {Raths, Max and Bauer, Lukas and Kuettner, Andreas and Fischer, Samuel and Laumer, Tobias}, title = {Gradual error detection technique for non-destructive assessment of density and tensile strength in fused filament fabrication processes}, series = {The International Journal of Advanced Manufacturing Technology}, journal = {The International Journal of Advanced Manufacturing Technology}, number = {131}, publisher = {Springer}, address = {London}, issn = {1433-3015}, doi = {10.1007/s00170-024-13280-w}, pages = {4149 -- 4163}, abstract = {Fused filament fabrication (FFF) is a widely used additive manufacturing process for producing functional components and prototypes. The FFF process involves depositing melted material layer-by-layer to build up 3D physical parts. The quality of the final product depends on several factors, including the component density and tensile strength, which are typically determined through destructive testing methods. X-ray microtomography (XCT) can be used to investigate the pore sizes and distribution. These approaches are time-consuming, costly, and wasteful, making it unsuitable for high-volume manufacturing. In this paper, a new method for non-destructive determination of component density and estimation of the tensile strength in FFF processes is proposed. This method involves the use of gradual error detection by sensors and convolutional neural networks. To validate this approach, a series of experiments has been conducted. Component density and tensile strength of the printed specimens with varying extrusion factor were measured using traditional destructive testing methods and XCT. The cumulative error detection method was used to predict the same properties without destroying the specimens. The predicted values were then compared with the measured values, and it was observed that the method accurately predicted the component density and tensile strength of the tested parts. This approach has several advantages over traditional destructive testing methods. The method is faster, cheaper, and more environmentally friendly since it does not require the destruction of the product. Moreover, it facilitates the testing of each individual part instead of assuming the same properties for components from one series. Additionally, it can provide real-time feedback on the quality of the product during the manufacturing process, allowing for adjustments to be made as needed. The advancement of this approach points toward a future trend in non-destructive testing methodologies, potentially revolutionizing quality assurance processes not only for consumer goods but various industries such as electronics or automotive industry. Moreover, its broader applications extend beyond FFF to encompass other additive manufacturing techniques such as selective laser sintering (SLS), or electron beam melting (EBM). A comparison between the old destructive testing methods and this innovative non-destructive approach underscores the possible fundamental change toward more efficient and sustainable manufacturing practices. This approach has the potential to significantly reduce the time and cost associated with traditional destructive testing methods while ensuring the quality of FFF-manufactured products.}, language = {en} }