@unpublished{RueckMuellerJobstetal., author = {R{\"u}ck, Thomas and M{\"u}ller, Max and Jobst, Simon and Weigl, Stefan and Pangerl, Jonas and Bierl, Rudolf and Matysik, Frank-Michael}, title = {Digital Twin of a Photoacoustic Trace Gas Sensor for Monitoring Methane in Complex Gas Compositions}, publisher = {Elsevier / SSRN}, doi = {10.2139/ssrn.4215170}, pages = {22}, abstract = {The digitalization of industrial processes requires smart sensor systems. Photoacoustic spectroscopy is well suited for this purpose as it allows for small-sized and low-cost trace gas analysis. However, the method is susceptible to changes in measurement conditions and standard calibration routines often fail to correct for all changes. We therefore created a Digital Twin (DT) of a photoacoustic trace gas sensor for methane and evaluated it regarding variations in gas composition (CH4, N2, O2, CO2, H2O), temperature and pressure. With a mean absolute percentage error of 0.8 \% the accuracy of the sensor after DT compensation significantly exceeds the 24 \% achieved based on standard calibration in nitrogen. For the first time, we can fully analytically compute the photoacoustic signal under moderate ambient conditions with an error in the ppbV range by taking a holistic approach. Assuming knowledge of the underlying energy transfer processes, the model of this Digital Twin can be adapted to any microphone based photoacoustic sensor for monitoring any analyte species.}, language = {en} }