@article{SavelievBelyaevaChashinetal., author = {Saveliev, Dmitry V. and Belyaeva, Inna A. and Chashin, Dmitri V. and Fetisov, Leonid Y. and Romeis, Dirk and Kettl, Wolfgang and Kramarenko, Elena Yu and Saphiannikova, M. and Stepanov, Gennady V. and Shamonin (Chamonine), Mikhail}, title = {Giant extensional strain of magnetoactive elastomeric cylinders in uniform magnetic fields}, series = {Materials}, volume = {13}, journal = {Materials}, number = {15}, publisher = {MDPI}, address = {Basel}, issn = {1996-1944}, doi = {10.3390/ma13153297}, pages = {1 -- 17}, abstract = {Elongations of magnetoactive elastomers (MAEs) under ascending-descending uniform magnetic fields were studied experimentally using a laboratory apparatus specifically designed to measure large extensional strains (up to 20\%) in compliant MAEs. In the literature, such a phenomenon is usually denoted as giant magnetostriction. The synthesized cylindrical MAE samples were based on polydimethylsiloxane matrices filled with micrometer-sized particles of carbonyl iron. The impact of both the macroscopic shape factor of the samples and their magneto-mechanical characteristics were evaluated. For this purpose, the aspect ratio of the MAE cylindrical samples, the concentration of magnetic particles in MAEs and the effective shear modulus were systematically varied. It was shown that the magnetically induced elongation of MAE cylinders in the maximum magnetic field of about 400 kA/m, applied along the cylinder axis, grew with the increasing aspect ratio. The effect of the sample composition is discussed in terms of magnetic filler rearrangements in magnetic fields and the observed experimental tendencies are rationalized by simple theoretical estimates. The obtained results can be used for the design of new smart materials with magnetic-field-controlled deformation properties, e.g., for soft robotics.}, language = {en} } @article{WiesentSchultheissLullaetal., author = {Wiesent, Lisa and Schultheiß, Ulrich and Lulla, Philipp and Noster, Ulf and Schratzenstaller, Thomas and Schmid, Christof and Nonn, Aida and Spear, Ashley}, title = {Computational analysis of the effects of geometric irregularities and post-processing steps on the mechanical behavior of additively manufactured 316L stainless steel stents}, series = {PLoS ONE}, volume = {15}, journal = {PLoS ONE}, number = {12}, publisher = {PLOS}, doi = {10.1371/journal.pone.0244463}, pages = {1 -- 30}, abstract = {Advances in additive manufacturing enable the production of tailored lattice structures and thus, in principle, coronary stents. This study investigates the effects of process-related irregularities, heat and surface treatment on the morphology, mechanical response, and expansion behavior of 316L stainless steel stents produced by laser powder bed fusion and provides a methodological approach for their numerical evaluation. A combined experimental and computational framework is used, based on both actual and computationally reconstructed laser powder bed fused stents. Process-related morphological deviations between the as-designed and actual laser powder bed fused stents were observed, resulting in a diameter increase by a factor of 2-2.6 for the stents without surface treatment and 1.3-2 for the electropolished stent compared to the as-designed stent. Thus, due to the increased geometrically induced stiffness, the laser powder bed fused stents in the as-built (7.11 ± 0.63 N) or the heat treated condition (5.87 ± 0.49 N) showed increased radial forces when compressed between two plates. After electropolishing, the heat treated stents exhibited radial forces (2.38 ± 0.23 N) comparable to conventional metallic stents. The laser powder bed fused stents were further affected by the size effect, resulting in a reduced yield strength by 41\% in the as-built and by 59\% in the heat treated condition compared to the bulk material obtained from tensile tests. The presented numerical approach was successful in predicting the macroscopic mechanical response of the stents under compression. During deformation, increased stiffness and local stress concentration were observed within the laser powder bed fused stents. Subsequent numerical expansion analysis of the derived stent models within a previously verified numerical model of stent expansion showed that electropolished and heat treated laser powder bed fused stents can exhibit comparable expansion behavior to conventional stents. The findings from this work motivate future experimental/numerical studies to quantify threshold values of critical geometric irregularities, which could be used to establish design guidelines for laser powder bed fused stents/lattice structures.}, subject = {Koronarendoprothese}, language = {en} } @article{WiesentSchultheissLullaetal., author = {Wiesent, Lisa and Schultheiß, Ulrich and Lulla, Philipp and Nonn, Aida and Noster, Ulf}, title = {Mechanical properties of small structures built by selective laser melting 316 L stainless steel - a phenomenological approach to improve component design}, series = {Materials Science \& Engineering Technology}, volume = {51}, journal = {Materials Science \& Engineering Technology}, number = {12}, publisher = {Wiley}, doi = {10.1002/mawe.202000038}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-14718}, pages = {1615 -- 1629}, abstract = {Experimental investigations are conducted to quantify the influence of specimen thickness and orientation on the mechanical properties of selective laser melted stainless steel 316 L. The results indicate that the mechanical strength and ductility increase with increasing specimen thickness until a saturation value is reached from a specimen thickness of about 2 mm. Specimen orientation dependency is pronounced for thin specimens (<1.5 mm), whereas only small deviations in strength are observed for thicker specimens with orientations of 30°, 45° and 90° to build direction. The mechanical properties of the specimen orientation of 0° to build direction shows great deviation to the other orientations and the smallest overall strength. A reliable design of selective laser melted components should account for specimen thickness and orientation, e. g. by a correction factor. Furthermore, it is recommended to avoid loads vertical (90°) and parallel (0°) to build direction to guarantee higher ductility and strength.}, language = {en} } @article{SternerBauer, author = {Sterner, Michael and Bauer, Franz}, title = {Power-to-X im Kontext der Energiewende und des Klimaschutzes in Deutschland}, series = {Chemie-Ingenieur-Technik}, volume = {92}, journal = {Chemie-Ingenieur-Technik}, number = {1-2}, publisher = {Wiley}, issn = {0009-286X}, doi = {10.1002/cite.201900167}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-11669}, pages = {85 -- 90}, abstract = {Um den Einfluss verschiedener Power-to-X-Verfahren auf die Transformation des deutschen Energiesystems und das Erreichen der Klimaschutzziele zu {\"u}berpr{\"u}fen, wurde ein sektor{\"u}bergreifendes Energiesystemmodel entwickelt. Die daraus gewonnenen Ergebnisse zeigen: F{\"u}r eine erfolgreiche Energiewende ist der Einsatz von Power-to-X in Zukunft unverzichtbar. Vor allem in Bereichen und Sektoren, in denen hohe Energiedichten erforderlich und nur wenig andere Optionen zur Defossilisierung vorhanden sind, werden Power-to-X-Technologien zwingend notwendig.}, subject = {Power-to-Gas}, language = {de} } @article{WeiglFeldmeierBierletal., author = {Weigl, Stefan and Feldmeier, Florian and Bierl, Rudolf and Matysik, Frank-Michael}, title = {Photoacoustic detection of acetone in N2 and synthetic air using a high power UV LED}, series = {Sensors Actuators B Chemical}, volume = {316}, journal = {Sensors Actuators B Chemical}, number = {August}, publisher = {Elsevier}, doi = {10.1016/j.snb.2020.128109}, pages = {1 -- 11}, abstract = {The performance of a photoacoustic trace gas sensor for the detection of acetone in N2 and synthetic air is reported. The sensor system utilises an amplitude modulated UV LED. The light source has an emission maximum at 278 nm and a maximum CW output power of 300 mW according to the datasheet. Three different collimating and focusing approaches have been investigated to guide the highly divergent LED light into the acoustic resonator of the photoacoustic measurement cell. A 3D printed aluminium cell was designed to optimize light coupling by simultaneously minimizing the photoacoustic background signal generation. Hence, the diameter of the resonator was set to a comparable large diameter of 10 mm and the inner walls of the resonator were mirror polished. The additive manufacturing procedure allowed for integration of a spirally formed gas channel, enabling gas heating prior to detection. The sensor performance was investigated by measuring acetone in N2 and synthetic air at different concentrations. The UV LED current was set to 86 \% of the maximum value according to the datasheet of the light source in order to increase the lifetime and thermal stability. An Allan-Werle deviation analysis validates a stable sensor performance. The limit of detection (LoD) was determined at a 3σ noise level with a 10 s lock-in amplifier time constant by sampling data points over 20 s with a data acquisition rate of 5 Hz. LoDs of 80.8 ppbV and 19.6 ppbV were obtained for acetone in N2 and synthetic air, respectively.}, language = {en} } @article{MikhaeilGadererDawoud, author = {Mikhaeil, Makram and Gaderer, Matthias and Dawoud, Belal}, title = {On the development of an innovative adsorber plate heat exchanger for adsorption heat transformation processes; an experimental and numerical study}, series = {Energy}, volume = {207}, journal = {Energy}, number = {September}, publisher = {Elsevier}, doi = {10.1016/j.energy.2020.118272}, pages = {1 -- 13}, abstract = {An innovative adsorber plate heat exchanger (APHE), which is developed for application in adsorption heat pumps, chillers and thermal energy storage systems, is introduced. A test frame has been constructed as a representative segment of the introduced APHE for applying loose grains of AQSOA-Z02. Adsorption kinetic measurements have been carried out in a volumetric large-temperature-jump setup under typical operating conditions of adsorption processes. A transient 2-D model is developed for the tested sample inside the setup. The measured temporal uptake variations with time have been fed to the model, through which a micro-pore diffusion coefficient at infinite temperature of 2 E-4 [m2s-1] and an activation energy of 42.1 [kJ mol-1] have been estimated. A 3-D model is developed to simulate the combined heat and mass transfer inside the APHE and implemented in a commercial software. Comparing the obtained results with the literature values for an extruded aluminium adsorber heat exchanger coated with a 500 μm layer of the same adsorbent, the differential water uptake obtained after 300 s of adsorption (8.2 g/100 g) implies a sound enhancement of 310\%. This result proves the great potential of the introduced APHE to remarkably enhance the performance of adsorption heat transformation appliances.}, language = {en} } @article{PremSindersbergerStriegletal., author = {Prem, Nina and Sindersberger, Dirk and Striegl, Birgit and B{\"o}hm, Valter and Monkman, Gareth J.}, title = {Shape memory effects using magnetoactive Boron-organo-silicon oxide polymers}, series = {Macromolecular Chemistry and Physics}, volume = {221}, journal = {Macromolecular Chemistry and Physics}, number = {15}, publisher = {Wiley}, doi = {10.1002/macp.202000149}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-23205}, pages = {1 -- 8}, abstract = {Thermomechanical shape memory materials have certain disadvantages when it comes to 3D volumetric reproduction intended for rapid prototyping or robotic prehension. The need to constantly supply energy to counteract elastic retraction forces in order to maintain the required geometry, together with the inability to achieve conformal stability at elevated temperatures, limits the application of thermal shape memory polymers. Form removal also presents problems as most viscoelastic materials do not ensure demolding stability. This work demonstrates how magnetoactive boron-organo-silicon oxide polymers under the influence of an applied magnetic field can be used to achieve energy free sustainable volumetric shape memory effects over extended periods. The rheopectic properties of boron-organo-silicon oxide materials sustain form removal without mold distortion.}, language = {en} } @article{MonkmanStrieglPremetal., author = {Monkman, Gareth J. and Striegl, Birgit and Prem, Nina and Sindersberger, Dirk}, title = {Electrical Properties of Magnetoactive Boron-Organo-Silicon Oxide Polymers}, series = {Macromolecular Chemistry and Physics}, volume = {221}, journal = {Macromolecular Chemistry and Physics}, number = {4}, publisher = {Wiley}, doi = {10.1002/macp.201900342}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-26488}, pages = {1 -- 8}, abstract = {The electrical properties of rheopectic magnetoactive composites comprising boron-organo-silicon oxide dielectric matrices containing carbonyl iron microparticles are presented for the first time. The increase in interfacial magnetocapacitance is seen to greatly exceed that experienced when using conventional elastomeric matrices such as polydimethylsiloxane. In addition to the increase in capacitance, a simultaneous and sharp decrease in the parallel electrical resistance over several orders of magnitude is also observed. The effects are time dependent but repeatable. Potential applications include magnetically controlled frequency dependent devices, magnetic sensor systems, weighting elements for neural networks, etc.}, language = {en} } @article{PremSindersbergerMonkman, author = {Prem, Nina and Sindersberger, Dirk and Monkman, Gareth J.}, title = {Infrared spectral analysis of low concentration magnetoactive polymers}, series = {Journal of Applied Polymer Science}, volume = {137}, journal = {Journal of Applied Polymer Science}, number = {7}, publisher = {Wiley}, organization = {WILEY}, issn = {1097-4628}, doi = {10.1002/app.48366}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-25913}, pages = {1 -- 7}, abstract = {This work concerns an area of magnetoactive polymer (MAP) research seldom considered. Traditionally only MAP with high concentrations of magnetic filler (typically between 10 and 90 wt\%) have been investigated. This article deals with a hitherto neglected aspect of research, namely MAP containing lower magnetic filler concentrations (1 to 3 wt\%). This article utilizes a range of spectroscopic analysis methods (Raman and FTIR) and their applicability to MAP characterization at wavelengths ranging from 2.5 to 25 mu m. Particular attention is paid to low carbonyl iron particle (CIP) concentrations in MAP for which the emergence of capillary doublets at a critical 2 wt\% concentration is revealed. This results in measurable magnetic field-dependent changes in IR absorption at a wavelength of 4.255 mu m together with a detectable CO2 susceptibility. (c) 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 48366.}, language = {en} } @article{MaierWeihererHuberetal., author = {Maier, Johannes and Weiherer, Maximilian and Huber, Michaela and Palm, Christoph}, title = {Optically tracked and 3D printed haptic phantom hand for surgical training system}, series = {Quantitative Imaging in Medicine and Surgery}, volume = {10}, journal = {Quantitative Imaging in Medicine and Surgery}, number = {02}, publisher = {AME Publishing Company}, address = {Hong Kong, China}, doi = {10.21037/qims.2019.12.03}, pages = {340 -- 455}, abstract = {Background: For surgical fixation of bone fractures of the human hand, so-called Kirschner-wires (K-wires) are drilled through bone fragments. Due to the minimally invasive drilling procedures without a view of risk structures like vessels and nerves, a thorough training of young surgeons is necessary. For the development of a virtual reality (VR) based training system, a three-dimensional (3D) printed phantom hand is required. To ensure an intuitive operation, this phantom hand has to be realistic in both, its position relative to the driller as well as in its haptic features. The softest 3D printing material available on the market, however, is too hard to imitate human soft tissue. Therefore, a support-material (SUP) filled metamaterial is used to soften the raw material. Realistic haptic features are important to palpate protrusions of the bone to determine the drilling starting point and angle. An optical real-time tracking is used to transfer position and rotation to the training system. Methods: A metamaterial already developed in previous work is further improved by use of a new unit cell. Thus, the amount of SUP within the volume can be increased and the tissue is softened further. In addition, the human anatomy is transferred to the entire hand model. A subcutaneous fat layer and penetration of air through pores into the volume simulate shiftability of skin layers. For optical tracking, a rotationally symmetrical marker attached to the phantom hand with corresponding reference marker is developed. In order to ensure trouble-free position transmission, various types of marker point applications are tested. Results: Several cuboid and forearm sample prints lead to a final 30 centimeter long hand model. The whole haptic phantom could be printed faultless within about 17 hours. The metamaterial consisting of the new unit cell results in an increased SUP share of 4.32\%. Validated by an expert surgeon study, this allows in combination with a displacement of the uppermost skin layer a good palpability of the bones. Tracking of the hand marker in dodecahedron design works trouble-free in conjunction with a reference marker attached to the worktop of the training system. Conclusions: In this work, an optically tracked and haptically correct phantom hand was developed using dual-material 3D printing, which can be easily integrated into a surgical training system.}, subject = {Handchirurgie}, language = {en} }