@article{WiesentSchultheissLullaetal., author = {Wiesent, Lisa and Schultheiß, Ulrich and Lulla, Philipp and Nonn, Aida and Noster, Ulf}, title = {Mechanical properties of small structures built by selective laser melting 316 L stainless steel - a phenomenological approach to improve component design}, series = {Materials Science \& Engineering Technology}, volume = {51}, journal = {Materials Science \& Engineering Technology}, number = {12}, publisher = {Wiley}, doi = {10.1002/mawe.202000038}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-14718}, pages = {1615 -- 1629}, abstract = {Experimental investigations are conducted to quantify the influence of specimen thickness and orientation on the mechanical properties of selective laser melted stainless steel 316 L. The results indicate that the mechanical strength and ductility increase with increasing specimen thickness until a saturation value is reached from a specimen thickness of about 2 mm. Specimen orientation dependency is pronounced for thin specimens (<1.5 mm), whereas only small deviations in strength are observed for thicker specimens with orientations of 30°, 45° and 90° to build direction. The mechanical properties of the specimen orientation of 0° to build direction shows great deviation to the other orientations and the smallest overall strength. A reliable design of selective laser melted components should account for specimen thickness and orientation, e. g. by a correction factor. Furthermore, it is recommended to avoid loads vertical (90°) and parallel (0°) to build direction to guarantee higher ductility and strength.}, language = {en} } @article{EngelhardtMelznerHavelkovaetal., author = {Engelhardt, Lucas and Melzner, Maximilian and Havelkova, Linda and Fiala, Pavel and Christen, Patrik and Dendorfer, Sebastian and Simon, Ulrich}, title = {A new musculoskeletal AnyBodyTM detailed hand model}, series = {Computer Methods in Biomechanics and Biomedical Engineering}, volume = {24}, journal = {Computer Methods in Biomechanics and Biomedical Engineering}, number = {7}, publisher = {Taylor \& Francis}, doi = {10.1080/10255842.2020.1851367}, pages = {777 -- 787}, abstract = {Musculoskeletal research questions regarding the prevention or rehabilitation of the hand can be addressed using inverse dynamics simulations when experiments are not possible. To date, no complete human hand model implemented in a holistic human body model has been fully developed. The aim of this work was to develop, implement, and validate a fully detailed hand model using the AnyBody Modelling System (AMS) (AnyBody, Aalborg, Denmark). To achieve this, a consistent multiple cadaver dataset, including all extrinsic and intrinsic muscles, served as a basis. Various obstacle methods were implemented to obtain with the correct alignment of the muscle paths together with the full range of motion of the fingers. These included tori, cylinders, and spherical ellipsoids. The origin points of the lumbrical muscles within the tendon of the flexor digitorum profundus added a unique feature to the model. Furthermore, the possibility of an entire patient-specific scaling based on the hand length and width were implemented in the model. For model validation, experimental datasets from the literature were used, which included the comparison of numerically calculated moment arms of the wrist, thumb, and index finger muscles. In general, the results displayed good comparability of the model and experimental data. However, the extrinsic muscles showed higher accordance than the intrinsic ones. Nevertheless, the results showed, that the proposed developed inverse dynamics hand model offers opportunities in a broad field of applications, where the muscles and joint forces of the forearm play a crucial role.}, language = {en} } @article{SteindlGalanBaldermannetal., author = {Steindl, Florian Roman and Galan, Isabel and Baldermann, Andre and Sakoparnig, Marlene and Briendl, Lukas G. and Juhart, Joachim and Thumann, Maria and Dietzel, Martin and R{\"o}ck, Rudolf and Kusterle, Wolfgang and Mittermayr, Florian}, title = {Sulfate durability and leaching behaviour of dry- and wet-mix shotcrete mixes}, series = {Cement and Concrete Research}, volume = {137}, journal = {Cement and Concrete Research}, number = {November}, publisher = {Elsevier}, doi = {10.1016/j.cemconres.2020.106180}, pages = {1 -- 19}, abstract = {Shotcrete is a material frequently used in underground constructions such as tunnels, where Ca leaching and sulfate attack are important durability issues. In this study, two test methods were employed to investigate the sulfate resistance and leaching behaviour of dry- and wet-mix shotcretes in sulfate solutions on a time-resolved basis. Tests on powdered samples showed the dissolution of AFm, portlandite and C-A-S-H, subsequently followed by the precipitation of calcite and ettringite. The extent of sulfate expansion of drill cores corresponded to the chemical response of the powder materials, particularly on the reactivity of Ca- and Al-containing hydrated cement phases. The use of high-purity metakaolin (7-10 wt\%) in the shotcrete binder significantly decreased the sulfate durability, while high amounts of other SCMs such as blast-furnace slag and silica fume (> 20 wt\%) had a positive effect on the durability of shotcrete.}, language = {en} } @article{ChavezBoehmBeckeretal., author = {Chavez, Jhohan and B{\"o}hm, Valter and Becker, Tatiana I. and Gast, Simon and Zeidis, Igor and Zimmermann, Klaus}, title = {Actuators based on a controlled particle-matrix interaction in magnetic hybrid materials for applications in locomotion and manipulation systems}, series = {Physical Sciences Reviews}, volume = {7}, journal = {Physical Sciences Reviews}, number = {11}, publisher = {de Gruyter}, doi = {10.1515/psr-2019-0087}, pages = {1263 -- 1290}, abstract = {The paper deals with the investigation of magneto-sensitive elastomers (MSE) and their application in technical actuator systems. MSE consist of an elastic matrix containing suspended magnetically soft and/or hard particles. Additionally, they can also contain silicone oil, graphite particles, thermoplastic components, etc., in various concentrations in order to tune specific properties such as viscosity, conductivity and thermoelasticity, respectively. The focuses of investigations are the beneficial properties of MSE in prototypes for locomotion and manipulation purposes that possess an integrated sensor function. The research follows the principle of a model-based design, i.e. the working steps are ideation, mathematical modelling, material characterization as well as building first functional models (prototypes). The developed apedal (without legs) and non-wheeled locomotion systems use the interplay between material deformations and the mechanical motion in connection with the issues of control and stability. Non-linear friction phenomena lead to a monotonous forward motion of the systems. The aim of this study is the design of such mechanical structures, which reduce the control costs. The investigations deal with the movement and control of 'intelligent' mechanisms, for which the magnetically field-controlled particle-matrix interactions provide an appropriate approach. The presented grippers enclose partially gripped objects, which is an advantage for handling sensitive objects. Form-fit grippers with adaptable contour at the contact area enable a uniform pressure distribution on the surface of gripped objects. Furthermore, with the possibility of active shape adaptation, objects with significantly differing geometries can be gripped. To realise the desired active shape adaptation, the effect of field-induced plasticity of MSE is used. The first developed prototypes mainly confirm the functional principles as such without direct application. For this, besides the ability of locomotion and manipulation itself, further technological possibilities have to be added to the systems. The first steps are therefore being taken towards integrated MSE based adaptive sensor systems.}, language = {en} } @article{BeckerRaikherStolbovetal., author = {Becker, Tatiana I. and Raikher, Yuriy L. and Stolbov, Oleg V. and B{\"o}hm, Valter and Zimmermann, Klaus}, title = {Magnetoactive elastomers for magnetically tunable vibrating sensor systems}, series = {Physical Sciences Reviews}, volume = {7}, journal = {Physical Sciences Reviews}, number = {10}, publisher = {de Gruyter}, issn = {2365-659X}, doi = {10.1515/psr-2019-0125}, pages = {1 -- 28}, abstract = {Magnetoactive elastomers (MAEs) are a special type of smart materials consisting of an elastic matrix with embedded microsized particles that are made of ferromagnetic materials with high or low coercivity. Due to their composition, such elastomers possess unique magnetic field-dependent material properties. The present paper compiles the results of investigations on MAEs towards an approach of their potential application as vibrating sensor elements with adaptable sensitivity. Starting with the model-based and experimental studies of the free vibrational behavior displayed by cantilevers made of MAEs, it is shown that the first bending eigenfrequency of the cantilevers depends strongly on the strength of an applied uniform magnetic field. The investigations of the forced vibration response of MAE beams subjected to in-plane kinematic excitation confirm the possibility of active magnetic control of the amplitude-frequency characteristics. With change of the uniform field strength, the MAE beam reveals different steady-state responses for the same excitation, and the resonance may occur at various ranges of the excitation frequency. Nonlinear dependencies of the amplification ratio on the excitation frequency are obtained for different magnitudes of the applied field. Furthermore, it is shown that the steady-state vibrations of MAE beams can be detected based on the magnetic field distortion. The field difference, which is measured simultaneously on the sides of a vibrating MAE beam, provides a signal with the same frequency as the excitation and an amplitude proportional to the amplitude of resulting vibrations. The presented prototype of the MAE-based vibrating unit with the field-controlled "configuration" can be implemented for realization of acceleration sensor systems with adaptable sensitivity. The ongoing research on MAEs is oriented to the use of other geometrical forms along with beams, e.g. two-dimensional structures such as membranes.}, language = {de} } @article{Goertler, author = {G{\"o}rtler, Michael}, title = {Zeit als (knappe) Ressource sozialp{\"a}dagogischen Handelns: Eine empirische Untersuchung zur Bedeutung von Zeit in der sozialp{\"a}dagogische Praxis}, series = {Diskurs Kindheits- und Jugendforschung}, volume = {15}, journal = {Diskurs Kindheits- und Jugendforschung}, number = {1}, publisher = {Verlag Barbara Budrich}, issn = {1862-5002}, doi = {10.3224/diskurs.v15i1.09}, pages = {109 -- 113}, language = {de} } @article{BruniMeijaardRilletal., author = {Bruni, S. and Meijaard, J. P. and Rill, Georg and Schwab, A. L.}, title = {State-of-the-art and challenges of railway and road vehicle dynamics with multibody dynamics approaches}, series = {Multibody System Dynamics}, volume = {49}, journal = {Multibody System Dynamics}, number = {1}, publisher = {Springer}, doi = {10.1007/s11044-020-09735-z}, pages = {1 -- 32}, abstract = {A review of the current use of multibody dynamics methods in the analysis of the dynamics of vehicles is given. Railway vehicle dynamics as well as road vehicle dynamics are considered, where for the latter the dynamics of cars and trucks and the dynamics of single-track vehicles, in particular motorcycles and bicycles, are reviewed. Commonalities and differences are shown, and open questions and challenges are given as directions for further research in this field.}, language = {en} } @article{FroeseJainNiedermeieretal., author = {Froese, Vincent and Jain, Brijnesh and Niedermeier, Rolf and Renken, Malte}, title = {Comparing temporal graphs using dynamic time warping}, series = {Social Network Analysis and Mining}, volume = {10}, journal = {Social Network Analysis and Mining}, publisher = {Springer Nature}, doi = {10.1007/s13278-020-00664-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-38493}, pages = {1 -- 16}, abstract = {Within many real-world networks, the links between pairs of nodes change over time. Thus, there has been a recent boom in studying temporal graphs. Recognizing patterns in temporal graphs requires a proximity measure to compare different temporal graphs. To this end, we propose to study dynamic time warping on temporal graphs. We define the dynamic tem- poral graph warping (dtgw) distance to determine the dissimilarity of two temporal graphs. Our novel measure is flexible and can be applied in various application domains. We show that computing the dtgw-distance is a challenging (in general) NP-hard optimization problem and identify some polynomial-time solvable special cases. Moreover, we develop a quadratic programming formulation and an efficient heuristic. In experiments on real-world data, we show that the heuristic performs very well and that our dtgw-distance performs favorably in de-anonymizing networks compared to other approaches.}, language = {en} } @article{SternerBauer, author = {Sterner, Michael and Bauer, Franz}, title = {Power-to-X im Kontext der Energiewende und des Klimaschutzes in Deutschland}, series = {Chemie-Ingenieur-Technik}, volume = {92}, journal = {Chemie-Ingenieur-Technik}, number = {1-2}, publisher = {Wiley}, issn = {0009-286X}, doi = {10.1002/cite.201900167}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-11669}, pages = {85 -- 90}, abstract = {Um den Einfluss verschiedener Power-to-X-Verfahren auf die Transformation des deutschen Energiesystems und das Erreichen der Klimaschutzziele zu {\"u}berpr{\"u}fen, wurde ein sektor{\"u}bergreifendes Energiesystemmodel entwickelt. Die daraus gewonnenen Ergebnisse zeigen: F{\"u}r eine erfolgreiche Energiewende ist der Einsatz von Power-to-X in Zukunft unverzichtbar. Vor allem in Bereichen und Sektoren, in denen hohe Energiedichten erforderlich und nur wenig andere Optionen zur Defossilisierung vorhanden sind, werden Power-to-X-Technologien zwingend notwendig.}, subject = {Power-to-Gas}, language = {de} } @article{vonGreveDierfeldLothenbachVollprachtetal., author = {von Greve-Dierfeld, Stefanie and Lothenbach, Barbara and Vollpracht, Anya and Wu, Bei and Huet, Bruno and Andrade, Carmen and Medina, C{\´e}sar and Thiel, Charlotte and Gruyaert, Elke and Vanoutrive, Hanne and Del Sa{\´e}z Bosque, Isabel F. and Ignjatovic, Ivan and Elsen, Jan and Provis, John L. and Scrivener, Karen and Thienel, Karl-Christian and Sideris, Kosmas and Zajac, Maciej and Alderete, Natalia and Cizer, {\"O}zlem and van den Heede, Philip and Hooton, Robert Douglas and Kamali-Bernard, Siham and Bernal, Susan A. and Zhao, Zengfeng and Shi, Zhenguo and de Belie, Nele}, title = {Understanding the carbonation of concrete with supplementary cementitious materials}, series = {Materials and Structures}, volume = {53}, journal = {Materials and Structures}, publisher = {Springer Nature}, doi = {10.1617/s11527-020-01558-w}, pages = {1 -- 34}, abstract = {Blended cements, where Portland cement clinker is partially replaced by supplementary cementitious materials (SCMs), provide the most feasible route for reducing carbon dioxide emissions associated with concrete production. However, lowering the clinker content can lead to an increasing risk of neutralisation of the concrete pore solution and potential reinforcement corrosion due to carbonation. carbonation of concrete with SCMs differs from carbonation of concrete solely based on Portland cement (PC). This is a consequence of the differences in the hydrate phase assemblage and pore solution chemistry, as well as the pore structure and transport properties, when varying the binder composition, age and curing conditions of the concretes. The carbonation mechanism and kinetics also depend on the saturation degree of the concrete and CO2 partial pressure which in turn depends on exposure conditions (e.g. relative humidity, volume, and duration of water in contact with the concrete surface and temperature conditions). This in turn influence the microstructural changes identified upon carbonation. This literature review, prepared by members of RILEM technical committee 281-CCC carbonation of concrete with supplementary cementitious materials, working groups 1 and 2, elucidates the effect of numerous SCM characteristics, exposure environments and curing conditions on the carbonation mechanism, kinetics and structural alterations in cementitious systems containing SCMs.}, language = {en} } @article{WeiglFeldmeierBierletal., author = {Weigl, Stefan and Feldmeier, Florian and Bierl, Rudolf and Matysik, Frank-Michael}, title = {Photoacoustic detection of acetone in N2 and synthetic air using a high power UV LED}, series = {Sensors Actuators B Chemical}, volume = {316}, journal = {Sensors Actuators B Chemical}, number = {August}, publisher = {Elsevier}, doi = {10.1016/j.snb.2020.128109}, pages = {1 -- 11}, abstract = {The performance of a photoacoustic trace gas sensor for the detection of acetone in N2 and synthetic air is reported. The sensor system utilises an amplitude modulated UV LED. The light source has an emission maximum at 278 nm and a maximum CW output power of 300 mW according to the datasheet. Three different collimating and focusing approaches have been investigated to guide the highly divergent LED light into the acoustic resonator of the photoacoustic measurement cell. A 3D printed aluminium cell was designed to optimize light coupling by simultaneously minimizing the photoacoustic background signal generation. Hence, the diameter of the resonator was set to a comparable large diameter of 10 mm and the inner walls of the resonator were mirror polished. The additive manufacturing procedure allowed for integration of a spirally formed gas channel, enabling gas heating prior to detection. The sensor performance was investigated by measuring acetone in N2 and synthetic air at different concentrations. The UV LED current was set to 86 \% of the maximum value according to the datasheet of the light source in order to increase the lifetime and thermal stability. An Allan-Werle deviation analysis validates a stable sensor performance. The limit of detection (LoD) was determined at a 3σ noise level with a 10 s lock-in amplifier time constant by sampling data points over 20 s with a data acquisition rate of 5 Hz. LoDs of 80.8 ppbV and 19.6 ppbV were obtained for acetone in N2 and synthetic air, respectively.}, language = {en} } @article{MikhaeilGadererDawoud, author = {Mikhaeil, Makram and Gaderer, Matthias and Dawoud, Belal}, title = {On the development of an innovative adsorber plate heat exchanger for adsorption heat transformation processes; an experimental and numerical study}, series = {Energy}, volume = {207}, journal = {Energy}, number = {September}, publisher = {Elsevier}, doi = {10.1016/j.energy.2020.118272}, pages = {1 -- 13}, abstract = {An innovative adsorber plate heat exchanger (APHE), which is developed for application in adsorption heat pumps, chillers and thermal energy storage systems, is introduced. A test frame has been constructed as a representative segment of the introduced APHE for applying loose grains of AQSOA-Z02. Adsorption kinetic measurements have been carried out in a volumetric large-temperature-jump setup under typical operating conditions of adsorption processes. A transient 2-D model is developed for the tested sample inside the setup. The measured temporal uptake variations with time have been fed to the model, through which a micro-pore diffusion coefficient at infinite temperature of 2 E-4 [m2s-1] and an activation energy of 42.1 [kJ mol-1] have been estimated. A 3-D model is developed to simulate the combined heat and mass transfer inside the APHE and implemented in a commercial software. Comparing the obtained results with the literature values for an extruded aluminium adsorber heat exchanger coated with a 500 μm layer of the same adsorbent, the differential water uptake obtained after 300 s of adsorption (8.2 g/100 g) implies a sound enhancement of 310\%. This result proves the great potential of the introduced APHE to remarkably enhance the performance of adsorption heat transformation appliances.}, language = {en} } @article{PremSindersbergerStriegletal., author = {Prem, Nina and Sindersberger, Dirk and Striegl, Birgit and B{\"o}hm, Valter and Monkman, Gareth J.}, title = {Shape memory effects using magnetoactive Boron-organo-silicon oxide polymers}, series = {Macromolecular Chemistry and Physics}, volume = {221}, journal = {Macromolecular Chemistry and Physics}, number = {15}, publisher = {Wiley}, doi = {10.1002/macp.202000149}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-23205}, pages = {1 -- 8}, abstract = {Thermomechanical shape memory materials have certain disadvantages when it comes to 3D volumetric reproduction intended for rapid prototyping or robotic prehension. The need to constantly supply energy to counteract elastic retraction forces in order to maintain the required geometry, together with the inability to achieve conformal stability at elevated temperatures, limits the application of thermal shape memory polymers. Form removal also presents problems as most viscoelastic materials do not ensure demolding stability. This work demonstrates how magnetoactive boron-organo-silicon oxide polymers under the influence of an applied magnetic field can be used to achieve energy free sustainable volumetric shape memory effects over extended periods. The rheopectic properties of boron-organo-silicon oxide materials sustain form removal without mold distortion.}, language = {en} } @article{MonkmanStrieglPremetal., author = {Monkman, Gareth J. and Striegl, Birgit and Prem, Nina and Sindersberger, Dirk}, title = {Electrical Properties of Magnetoactive Boron-Organo-Silicon Oxide Polymers}, series = {Macromolecular Chemistry and Physics}, volume = {221}, journal = {Macromolecular Chemistry and Physics}, number = {4}, publisher = {Wiley}, doi = {10.1002/macp.201900342}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-26488}, pages = {1 -- 8}, abstract = {The electrical properties of rheopectic magnetoactive composites comprising boron-organo-silicon oxide dielectric matrices containing carbonyl iron microparticles are presented for the first time. The increase in interfacial magnetocapacitance is seen to greatly exceed that experienced when using conventional elastomeric matrices such as polydimethylsiloxane. In addition to the increase in capacitance, a simultaneous and sharp decrease in the parallel electrical resistance over several orders of magnitude is also observed. The effects are time dependent but repeatable. Potential applications include magnetically controlled frequency dependent devices, magnetic sensor systems, weighting elements for neural networks, etc.}, language = {en} } @article{PremSindersbergerMonkman, author = {Prem, Nina and Sindersberger, Dirk and Monkman, Gareth J.}, title = {Infrared spectral analysis of low concentration magnetoactive polymers}, series = {Journal of Applied Polymer Science}, volume = {137}, journal = {Journal of Applied Polymer Science}, number = {7}, publisher = {Wiley}, organization = {WILEY}, issn = {1097-4628}, doi = {10.1002/app.48366}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-25913}, pages = {1 -- 7}, abstract = {This work concerns an area of magnetoactive polymer (MAP) research seldom considered. Traditionally only MAP with high concentrations of magnetic filler (typically between 10 and 90 wt\%) have been investigated. This article deals with a hitherto neglected aspect of research, namely MAP containing lower magnetic filler concentrations (1 to 3 wt\%). This article utilizes a range of spectroscopic analysis methods (Raman and FTIR) and their applicability to MAP characterization at wavelengths ranging from 2.5 to 25 mu m. Particular attention is paid to low carbonyl iron particle (CIP) concentrations in MAP for which the emergence of capillary doublets at a critical 2 wt\% concentration is revealed. This results in measurable magnetic field-dependent changes in IR absorption at a wavelength of 4.255 mu m together with a detectable CO2 susceptibility. (c) 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 48366.}, language = {en} } @article{MetschSchmidtSindersbergeretal., author = {Metsch, P. and Schmidt, H. and Sindersberger, Dirk and Kalina, K. A. and Brummund, J. and Auernhammer, G{\"u}nter and Monkman, Gareth J. and K{\"a}stner, Markus}, title = {Field-Induced Interactions in Magneto-Active Elastomers}, series = {Smart Materials and Structures}, volume = {29}, journal = {Smart Materials and Structures}, number = {8}, publisher = {IOPscience}, doi = {10.1088/1361-665X/ab92dc}, pages = {1 -- 10}, abstract = {In this contribution, field-induced interactions of magnetizable particles embedded into a soft elastomer matrix are analyzed with regard to the resulting mechanical deformations. By comparing experiments for two-, three- and four-particle systems with the results of finite element simulations, a fully coupled continuum model for magneto-active elastomers is validated with the help of real data for the first time. The model under consideration permits the investigation of magneto-active elastomers with arbitrary particle distances, shapes and volume fractions as well as magnetic and mechanical properties of the individual constituents. It thus represents a basis for future studies on more complex, realistic systems. Our results show a very good agreement between experiments and numerical simulations—the deformation behavior of all systems is captured by the model qualitatively as well as quantitatively. Within a sensitivity analysis, the influence of the initial particle positions on the systems' response is examined. Furthermore, a comparison of the full three-dimensional model with the often used, simplified two-dimensional approach shows the typical overestimation of resulting interactions in magneto-active elastomers.}, language = {en} } @article{HuLinnerTrummeretal., author = {Hu, Rongbo and Linner, Thomas and Trummer, Julian and G{\"u}ttler, J{\"o}rg and Kabouteh, Amir and Langosch, Katharina and Bock, Thomas}, title = {Developing a Smart Home Solution Based on Personalized Intelligent Interior Units to Promote Activity and Customized Healthcare for Aging Society}, series = {Journal of Population Ageing: Special Issue on responsive engagement of older persons promoting activity and customized healthcare}, volume = {13}, journal = {Journal of Population Ageing: Special Issue on responsive engagement of older persons promoting activity and customized healthcare}, number = {1}, publisher = {Springer Nature}, doi = {10.1007/s12062-020-09267-6}, pages = {257 -- 280}, abstract = {The world's population is aging at an unprecedented pace. Aging society is not only a severe crisis in the developed world, but also a rigorous challenge in emerging economies. Many age-related diseases are fostered by the lack of physical, cognitive, and social activities. Increasing the activity level has many benefits for the elderly and can improve their independence. Based on the analysis of the state-of-the-art and shortcomings of the current smart home solutions, the EU-funded research project REACH aims to develop a service system that will turn clinical and care environments into personalized modular sensing, prevention, and intervention systems that encourage the elderly to become healthy through various activities. To achieve that goal, the research team developed a series of smart furniture (PI2Us) that materialize the research concepts and functionality seamlessly into the various environments. Specifically, the development process and the functionality testing results of the PI2Us are reported in detail. In addition, a simulated smart home solution concept (TRACK) integrating key assistive technologies developed is proposed to create a comprehensive interior living and care environment for elderly users. Due to its modularity and flexibility, the partial or entire solution can be easily adapted and rapidly deployed in different use case settings in Europe, which allows the project consortium to execute different testing activities. In the next phase, the research team will focus on enhancing the usability and performance of the prototypes in order to eventually push them to the market. In conclusion, this research provides an innovative smart home solution for the industry to mitigate the impact of aging society.}, language = {en} } @article{YuanGeisslerShaoetal., author = {Yuan, Jing and Geissler, Christian and Shao, Weijia and Lommatzsch, Andreas and Jain, Brijnesh}, title = {When algorithm selection meets Bi-linear Learning to Rank: accuracy and inference time trade off with candidates expansion}, series = {International Journal of Data Science and Analytics}, journal = {International Journal of Data Science and Analytics}, publisher = {Springer Nature}, doi = {10.1007/s41060-020-00229-x}, pages = {17}, abstract = {Algorithm selection (AS) tasks are dedicated to find the optimal algorithm for an unseen problem instance. With the knowledge of problem instances' meta-features and algorithms' landmark performances, Machine Learning (ML) approaches are applied to solve AS problems. However, the standard training process of benchmark ML approaches in AS either needs to train the models specifically for every algorithm or relies on the sparse one-hot encoding as the algorithms' representation. To escape these intermediate steps and form the mapping function directly, we borrow the learning to rank framework from Recommender System (RS) and embed the bi-linear factorization to model the algorithms' performances in AS. This Bi-linear Learning to Rank (BLR) has proven to work with competence in some AS scenarios and thus is also proposed as a benchmark approach. Thinking from the evaluation perspective in the modern AS challenges, precisely predicting the performance is usually the measuring goal. Though approaches' inference time also needs to be counted for the running time cost calculation, it's always overlooked in the evaluation process. The multi-objective evaluation metric Adjusted Ratio of Root Ratios (A3R) is therefore advocated in this paper to balance the trade-off between the accuracy and inference time in AS. Concerning A3R, BLR outperforms other benchmarks when expanding the candidates range to TOP3. The better effect of this candidates expansion results from the cumulative optimum performance during the AS process. We take the further step in the experimentation to represent the advantage of such TOPK expansion, and illustrate that such expansion can be considered as the supplement for the convention of TOP1 selection during the evaluation process.}, language = {en} } @article{LinnerSeelingerVogtLydiaetal., author = {Linner, Thomas and Seelinger, Anja and Vogt Lydia, and Sch{\"a}pers Barbara, and Steinb{\"o}ck, Martina and Krewer, Carmen and Bock, Thomas}, title = {REACH: Solutions for Technology-Based Prevention and Empowerment for Older People and their Caregivers}, series = {Journal of Population Ageing: Special Issue on responsive engagement of older persons promoting activity and customized healthcare}, volume = {13}, journal = {Journal of Population Ageing: Special Issue on responsive engagement of older persons promoting activity and customized healthcare}, number = {1}, publisher = {Springer Nature}, doi = {10.1007/s12062-020-09268-5}, pages = {131 -- 137}, abstract = {REACH stands for "Responsive Engagement of the Elderly Promoting Activity and Customized Healthcare". Sustained physical activity matters greatly to the health and well-being of older people and significantly improves their chance of maintaining independent living. It can make a difference across the whole care continuum as well as in almost every setting. Therefore, REACH solutions focus on the systematic, target-oriented increase of physical activity of older people, and tackle the whole prevention spectrum (primary, secondary, and tertiary). It seeks to empower older people and their formal and informal caregivers, and works towards viable solutions for both the formal and in-formal care sector. Technology-based personalization of prevention, activation, and care services provided in various living and care settings is at the center of the developed solutions. Ideally toolkit approach would allow for the tailoring of solutions that create value for end-users, care providers and health care payers alike through the combination, integration and adaptation/re-design elements towards the different contexts of different countries, different payment and reimbursement structures. This Special Issue sheds light on such solutions, their conception, their development, and their testing.}, language = {en} } @article{SchecklmannSchmausserKlingeretal., author = {Schecklmann, Martin and Schmausser, Maximilian and Klinger, Felix and Kreuzer, Peter M. and Krenkel, Lars and Langguth, Berthold}, title = {Resting motor threshold and magnetic field output of the figure-of-8 and the double-cone coil}, series = {scientific reports}, volume = {10}, journal = {scientific reports}, number = {1}, publisher = {Nature}, doi = {10.1038/s41598-020-58034-2}, abstract = {The use of the double-cone (DC) coil in transcranial magnetic stimulation (TMS) is promoted with the notion that the DC coil enables stimulation of deeper brain areas in contrast to conventional figure-of-8 (Fo8) coils. However, systematic comparisons of these two coil types with respect to the spatial distribution of the magnetic field output and also to the induced activity in superficial and deeper brain areas are limited. Resting motor thresholds of the left and right first dorsal interosseous (FDI) and tibialis anterior (TA) were determined with the DC and the Fo8 coil in 17 healthy subjects. Coils were orientated over the corresponding motor area in an angle of 45 degrees for the hand area with the handle pointing in posterior direction and in medio-lateral direction for the leg area. Physical measurements were done with an automatic gantry table using a Gaussmeter. Resting motor threshold was higher for the leg area in contrast to the hand area and for the Fo8 in contrast to the DC coil. Muscle by coil interaction was also significant providing higher differences between leg and hand area for the Fo8 (about 27\%) in contrast to the DC coil (about 15\%). Magnetic field strength was higher for the DC coil in contrast to the Fo8 coil. The DC coil produces a higher magnetic field with higher depth of penetration than the figure of eight coil.}, language = {en} }