@article{SternerBauer, author = {Sterner, Michael and Bauer, Franz}, title = {Power-to-X im Kontext der Energiewende und des Klimaschutzes in Deutschland}, series = {Chemie-Ingenieur-Technik}, volume = {92}, journal = {Chemie-Ingenieur-Technik}, number = {1-2}, publisher = {Wiley}, issn = {0009-286X}, doi = {10.1002/cite.201900167}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-11669}, pages = {85 -- 90}, abstract = {Um den Einfluss verschiedener Power-to-X-Verfahren auf die Transformation des deutschen Energiesystems und das Erreichen der Klimaschutzziele zu {\"u}berpr{\"u}fen, wurde ein sektor{\"u}bergreifendes Energiesystemmodel entwickelt. Die daraus gewonnenen Ergebnisse zeigen: F{\"u}r eine erfolgreiche Energiewende ist der Einsatz von Power-to-X in Zukunft unverzichtbar. Vor allem in Bereichen und Sektoren, in denen hohe Energiedichten erforderlich und nur wenig andere Optionen zur Defossilisierung vorhanden sind, werden Power-to-X-Technologien zwingend notwendig.}, subject = {Power-to-Gas}, language = {de} } @article{PremSindersbergerStriegletal., author = {Prem, Nina and Sindersberger, Dirk and Striegl, Birgit and B{\"o}hm, Valter and Monkman, Gareth J.}, title = {Shape memory effects using magnetoactive Boron-organo-silicon oxide polymers}, series = {Macromolecular Chemistry and Physics}, volume = {221}, journal = {Macromolecular Chemistry and Physics}, number = {15}, publisher = {Wiley}, doi = {10.1002/macp.202000149}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-23205}, pages = {1 -- 8}, abstract = {Thermomechanical shape memory materials have certain disadvantages when it comes to 3D volumetric reproduction intended for rapid prototyping or robotic prehension. The need to constantly supply energy to counteract elastic retraction forces in order to maintain the required geometry, together with the inability to achieve conformal stability at elevated temperatures, limits the application of thermal shape memory polymers. Form removal also presents problems as most viscoelastic materials do not ensure demolding stability. This work demonstrates how magnetoactive boron-organo-silicon oxide polymers under the influence of an applied magnetic field can be used to achieve energy free sustainable volumetric shape memory effects over extended periods. The rheopectic properties of boron-organo-silicon oxide materials sustain form removal without mold distortion.}, language = {en} } @article{PremSindersbergerMonkman, author = {Prem, Nina and Sindersberger, Dirk and Monkman, Gareth J.}, title = {Infrared spectral analysis of low concentration magnetoactive polymers}, series = {Journal of Applied Polymer Science}, volume = {137}, journal = {Journal of Applied Polymer Science}, number = {7}, publisher = {Wiley}, organization = {WILEY}, issn = {1097-4628}, doi = {10.1002/app.48366}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-25913}, pages = {1 -- 7}, abstract = {This work concerns an area of magnetoactive polymer (MAP) research seldom considered. Traditionally only MAP with high concentrations of magnetic filler (typically between 10 and 90 wt\%) have been investigated. This article deals with a hitherto neglected aspect of research, namely MAP containing lower magnetic filler concentrations (1 to 3 wt\%). This article utilizes a range of spectroscopic analysis methods (Raman and FTIR) and their applicability to MAP characterization at wavelengths ranging from 2.5 to 25 mu m. Particular attention is paid to low carbonyl iron particle (CIP) concentrations in MAP for which the emergence of capillary doublets at a critical 2 wt\% concentration is revealed. This results in measurable magnetic field-dependent changes in IR absorption at a wavelength of 4.255 mu m together with a detectable CO2 susceptibility. (c) 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 48366.}, language = {en} } @article{MonkmanStrieglPremetal., author = {Monkman, Gareth J. and Striegl, Birgit and Prem, Nina and Sindersberger, Dirk}, title = {Electrical Properties of Magnetoactive Boron-Organo-Silicon Oxide Polymers}, series = {Macromolecular Chemistry and Physics}, volume = {221}, journal = {Macromolecular Chemistry and Physics}, number = {4}, publisher = {Wiley}, doi = {10.1002/macp.201900342}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-26488}, pages = {1 -- 8}, abstract = {The electrical properties of rheopectic magnetoactive composites comprising boron-organo-silicon oxide dielectric matrices containing carbonyl iron microparticles are presented for the first time. The increase in interfacial magnetocapacitance is seen to greatly exceed that experienced when using conventional elastomeric matrices such as polydimethylsiloxane. In addition to the increase in capacitance, a simultaneous and sharp decrease in the parallel electrical resistance over several orders of magnitude is also observed. The effects are time dependent but repeatable. Potential applications include magnetically controlled frequency dependent devices, magnetic sensor systems, weighting elements for neural networks, etc.}, language = {en} } @article{MetschSchmidtSindersbergeretal., author = {Metsch, P. and Schmidt, H. and Sindersberger, Dirk and Kalina, K. A. and Brummund, J. and Auernhammer, G{\"u}nter and Monkman, Gareth J. and K{\"a}stner, Markus}, title = {Field-Induced Interactions in Magneto-Active Elastomers}, series = {Smart Materials and Structures}, volume = {29}, journal = {Smart Materials and Structures}, number = {8}, publisher = {IOPscience}, doi = {10.1088/1361-665X/ab92dc}, pages = {1 -- 10}, abstract = {In this contribution, field-induced interactions of magnetizable particles embedded into a soft elastomer matrix are analyzed with regard to the resulting mechanical deformations. By comparing experiments for two-, three- and four-particle systems with the results of finite element simulations, a fully coupled continuum model for magneto-active elastomers is validated with the help of real data for the first time. The model under consideration permits the investigation of magneto-active elastomers with arbitrary particle distances, shapes and volume fractions as well as magnetic and mechanical properties of the individual constituents. It thus represents a basis for future studies on more complex, realistic systems. Our results show a very good agreement between experiments and numerical simulations—the deformation behavior of all systems is captured by the model qualitatively as well as quantitatively. Within a sensitivity analysis, the influence of the initial particle positions on the systems' response is examined. Furthermore, a comparison of the full three-dimensional model with the often used, simplified two-dimensional approach shows the typical overestimation of resulting interactions in magneto-active elastomers.}, language = {en} }