@misc{Westner, author = {Westner, Markus}, title = {Rezension "Designed for Digital".}, series = {HMD Praxis Der Wirtschaftsinformatik}, journal = {HMD Praxis Der Wirtschaftsinformatik}, publisher = {Springer Nature}, doi = {10.1365/s40702-022-00877-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-38626}, language = {de} } @article{KrizAuchter, author = {Kriz, Willy C. and Auchter, Eberhard}, title = {10 Years of Evaluation Research Into Gaming Simulation for German Entrepreneurship and a New Study on Its Long-Term Effects}, series = {Simulation \& Gaming}, volume = {47}, journal = {Simulation \& Gaming}, number = {2}, publisher = {Sage}, doi = {10.1177/1046878116633972}, pages = {179 -- 205}, abstract = {Background: Over the past ten years, we carried out several comprehensive studies in the area of entrepreneurship education using business games that simulate the business processes of startups. The studies researched the learning effects of these games on German university students. Aim: The studies we present investigated if the simulation game-based educational entrepreneurship programs in Germany reached their goals. These goals included the fostering of participants' entrepreneurial competencies and desire to create a startup. Method: We show traditional summative output-oriented results and more profound results based on our theory-based evaluation approach. A so-called logic model provides a framework for the interpretation of what takes place during the entrepreneurship business simulations. Currently, we have conducted research on more than 50 regular university courses with more than 1000 students. Another part of our studies is the evaluation of entrepreneurship education in the German national business game-based competition, EXIST priME Cup (further called EPC). More than 12,000 students attended more than 500 of these cup seminars. We also show new results from an online survey that was carried out to measure the long-term effects of the startup simulation-based seminars. Results: The results of five studies are summarized, and show an overall increase in the participants' knowledge of business administration and business plan preparation skills (required in start-up context). Apart from other results, significant gender-based differences are identified. The differences relate to entrepreneurial attitudes and motivation. Some test scenarios with cup seminars for women only with extended debriefing seem to reduce this decrease in the motivation of women; further research with larger samples is necessary. A new study on the long-term effects shows a very high acceptance rate and demonstrates the satisfaction of former students. The simulation game-based program resulted in participants starting startups at a rate that is approximately twice as high (around 16\%) as the normal rate in Germany.}, language = {en} } @misc{KrieglKravanjaHribaretal., author = {Kriegl, Raphael and Kravanja, Gaia and Hribar, Luka and Jezeršek, Matija and Drevenšek-Olenik, Irena and Shamonin (Chamonine), Mikhail}, title = {Characterization of Wetting Properties of Magnetoactive Elastomer Surfaces}, series = {Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS) - 2023, September 11-13, 2023 Austin, Texas, USA}, journal = {Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS) - 2023, September 11-13, 2023 Austin, Texas, USA}, publisher = {The American Society of Mechanical Engineers}, address = {New York, USA}, isbn = {978-0-7918-8752-3}, doi = {10.1115/SMASIS2023-110998}, abstract = {Commercially available contact angle (CA) measuring devices usually do not allow for the application of magnetic fields to the sample under test. A setup for measuring the CA of liquids on magnetosensitive surfaces has been developed specifically for investigating the surfaces of magnetoactive elastomers (MAEs). The addition of a programmable linear stage, which moves a permanent magnet, allows for fine control of the magnetic field applied to the MAE without the need for large and power-consuming electromagnets. Paired with a custom control and evaluation software, this measurement setup operates semiautomatically, limiting operator error and increasing precision, speed, as well as repeatability of static and dynamic CA measurements for different magnetoactive materials. The software is equipped with robust droplet fitting algorithms to avoid experimental challenges arising with soft magnetoactive materials, such as the curling of sample edges or diffuse non-reflective surfaces. Several application examples on MAE surfaces, both processed and unprocessed, are presented.}, language = {en} } @article{ThemaBauerSterner, author = {Thema, Martin and Bauer, Franz and Sterner, Michael}, title = {Power-to-Gas: Electrolysis and methanation status review}, series = {Renewable and Sustainable Energy Reviews}, volume = {112}, journal = {Renewable and Sustainable Energy Reviews}, number = {7}, publisher = {Elsevier}, doi = {10.1016/j.rser.2019.06.030}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-26238}, pages = {775 -- 787}, abstract = {This review gives a worldwide overview on Power-to-Gas projects producing hydrogen or renewable substitute natural gas focusing projects in central Europe. It deepens and completes the content of previous reviews by including hitherto unreviewed projects and by combining project names with details such as plant location. It is based on data from 153 completed, recent and planned projects since 1988 which were evaluated with regards to plant allocation, installed power development, plant size, shares and amounts of hydrogen or substitute natural gas producing examinations and product utilization phases. Cost development for electrolysis and carbon dioxide methanation was analyzed and a projection until 2030 is given with an outlook to 2050. The results show substantial cost reductions for electrolysis as well as for methanation during the recent years and a further price decline to less than 500 euro per kilowatt electric power input for both technologies until 2050 is estimated if cost projection follows the current trend. Most of the projects examined are located in Germany, Denmark, the United States of America and Canada. Following an exponential global trend to increase installed power, today's Power-to-Gas applications are operated at about 39 megawatt. Hydrogen and substitute natural gas were investigated on equal terms concerning the number of projects.}, language = {en} } @article{WiesentSchultheissLullaetal., author = {Wiesent, Lisa and Schultheiß, Ulrich and Lulla, Philipp and Nonn, Aida and Noster, Ulf}, title = {Mechanical properties of small structures built by selective laser melting 316 L stainless steel - a phenomenological approach to improve component design}, series = {Materials Science \& Engineering Technology}, volume = {51}, journal = {Materials Science \& Engineering Technology}, number = {12}, publisher = {Wiley}, doi = {10.1002/mawe.202000038}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-14718}, pages = {1615 -- 1629}, abstract = {Experimental investigations are conducted to quantify the influence of specimen thickness and orientation on the mechanical properties of selective laser melted stainless steel 316 L. The results indicate that the mechanical strength and ductility increase with increasing specimen thickness until a saturation value is reached from a specimen thickness of about 2 mm. Specimen orientation dependency is pronounced for thin specimens (<1.5 mm), whereas only small deviations in strength are observed for thicker specimens with orientations of 30°, 45° and 90° to build direction. The mechanical properties of the specimen orientation of 0° to build direction shows great deviation to the other orientations and the smallest overall strength. A reliable design of selective laser melted components should account for specimen thickness and orientation, e. g. by a correction factor. Furthermore, it is recommended to avoid loads vertical (90°) and parallel (0°) to build direction to guarantee higher ductility and strength.}, language = {en} } @article{KovalevBelyaevavonHofenetal., author = {Kovalev, Alexander and Belyaeva, Inna A. and von Hofen, Christian and Gorb, Stanislav and Shamonin (Chamonine), Mikhail}, title = {Magnetically Switchable Adhesion and Friction of Soft Magnetoactive Elastomers}, series = {Advanced Engineering Materials}, volume = {24}, journal = {Advanced Engineering Materials}, number = {10}, publisher = {WILEY-VCH}, doi = {10.1002/adem.202200372}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-45283}, pages = {1 -- 8}, abstract = {Herein, the effect of an applied moderate (~240 mT) magnetic field on the work of adhesion (WoA) of mechanically soft (the shear modulus ~10 kPa) magnetoactive elastomer (MAE) samples with two different mass fractions (70 and 80 wt\%) of carbonyl iron powder (CIP) is concerned. The unfilled elastomer sample is used for comparison. Due to some sedimentation of filling particles, the concentration of inclusions in thin (~10 μm) subsurface layers is different. It is shown that the WoA increases (up to 1.8-fold) on the particle-enriched side (PES) in the magnetic field and its value is higher for higher filler concentration. On the particle-depleted side (PDS), WoA does not depend on particle concentration and on the magnetic field. Adhesion and friction are coupled in MAEs. No statistically significant difference in the friction coefficient, determined from the extended Amontons´ law, depending on sample side, CIP concentration, or presence of magnetic field is found. However, the PDS in the magnetic field demonstrates significantly higher critical shear stress compared to that for the PES or PDS in the absence of magnetic field. Correlations between different surface properties are discussed. Obtained results are useful for the development of magnetically controllable soft robots.}, language = {en} } @article{BoyceKramerBosiljevacetal., author = {Boyce, Brad L. and Kramer, Sharlotte L. B. and Bosiljevac, T. R. and Corona, Edmundo and Moore, J. A. and Elkhodary, Khalil and Simha, C. Hari Manoj and Williams, Bruce W. and Cerrone, Albert R. and Nonn, Aida and Hochhalter, Jacob D. and Bomarito, Geoffrey F. and Warner, James E. and Carter, Bruce J. and Warner, Derek H. and Ingraffea, Anthony R. and Zhang, T. and Fang, X. and Lua, Jim and Chiaruttini, Vincent and Maziere, Matthieu and Feld-Payet, Sylvia and Yastrebov, Vladislav A. and Besson, Jacques and Chaboche, Jean Louis and Lian, J. and Di, Y. and Wu, Bei and Novokshanov, Denis and Vajragupta, Napat and Kucharczyk, Pawel and Brinnel, Viktoria and Doebereiner, Benedikt and Muenstermann, Sebastian and Neilsen, Michael K. and Dion, Kristin and Karlson, Kyle N. and Foulk, James Wesley and Brown, Arthur A. and Veilleux, Michael G. and Bignell, John L. and Sanborn, Scott E. and Jones, Chris A. and Mattie, Patrick D. and Pack, Keunhwan and Wierzbicki, Tomasz and Chi, Sheng-Wei and Lin, S.-P. and Mahdavi, Ashkan and Predan, Jozef and Zadravec, Janko and Gross, Andrew J. and Ravi-Chandar, KRISHNASWAMY and Xue, Liang}, title = {The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading}, series = {International journal of fracture}, journal = {International journal of fracture}, number = {198, 1-2}, publisher = {Springer}, doi = {10.1007/s10704-016-0089-7}, pages = {5 -- 100}, abstract = {Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Rather than evaluate the predictions of a single simulation approach, the Sandia Fracture Challenge relies on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5-68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti-6Al-4V sheet under both quasi-static and modest-rate dynamic loading (failure in 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. Additional shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the 'state-of-the-art' in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods.}, language = {en} } @article{SchoenbergerScherzingerMauerer, author = {Sch{\"o}nberger, Manuel and Scherzinger, Stefanie and Mauerer, Wolfgang}, title = {Ready to Leap (by Co-Design)? Join Order Optimisation on Quantum Hardware}, series = {Proceedings of the ACM on Management of Data, PACMMOD}, volume = {1}, journal = {Proceedings of the ACM on Management of Data, PACMMOD}, number = {1}, publisher = {ACM}, address = {New York, NY,}, doi = {10.1145/3588946}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-56634}, pages = {1 -- 27}, abstract = {The prospect of achieving computational speedups by exploiting quantum phenomena makes the use of quantum processing units (QPUs) attractive for many algorithmic database problems. Query optimisation, which concerns problems that typically need to explore large search spaces, seems like an ideal match for the known quantum algorithms. We present the first quantum implementation of join ordering, which is one of the most investigated and fundamental query optimisation problems, based on a reformulation to quadratic binary unconstrained optimisation problems. We empirically characterise our method on two state-of-the-art approaches (gate-based quantum computing and quantum annealing), and identify speed-ups compared to the best know classical join ordering approaches for input sizes that can be processed with current quantum annealers. However, we also confirm that limits of early-stage technology are quickly reached. Current QPUs are classified as noisy, intermediate scale quantum computers (NISQ), and are restricted by a variety of limitations that reduce their capabilities as compared to ideal future quantum computers, which prevents us from scaling up problem dimensions and reaching practical utility. To overcome these challenges, our formulation accounts for specific QPU properties and limitations, and allows us to trade between achievable solution quality and possible problem size. In contrast to all prior work on quantum computing for query optimisation and database-related challenges, we go beyond currently available QPUs, and explicitly target the scalability limitations: Using insights gained from numerical simulations and our experimental analysis, we identify key criteria for co-designing QPUs to improve their usefulness for join ordering, and show how even relatively minor physical architectural improvements can result in substantial enhancements. Finally, we outline a path towards practical utility of custom-designed QPUs.}, language = {en} } @article{HornbergerKisselStriegletal., author = {Hornberger, Helga and Kissel, Hannah and Striegl, Birgit and Kronseder, Matthias and Vollnhals, Florian and Christiansen, Silke H.}, title = {Bioactivity and corrosion behavior of magnesium barrier membranes}, series = {Materials and Corrosion}, volume = {73}, journal = {Materials and Corrosion}, number = {1}, publisher = {Wiley}, doi = {10.1002/maco.202112385}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-24499}, pages = {8 -- 19}, abstract = {In the current research, magnesium and its alloys have been intensively studied as resorbable implant materials. Magnesium materials combine their good mechanical properties with bioactivity, which make them interesting for guided bone regeneration and for the application as barrier membranes. In this study, the in vitro degradation behavior of thin magnesium films was investigated in cell medium and simulated body fluid. Three methods were applied to evaluate corrosion rates: measurements of (i) the gaseous volume evolved during immersion, (ii) volume change after immersion, and (iii) polarization curves. In this comparison, measurements of H2 development in Dulbecco's modified Eagle's medium showed to be the most appropriate method, exhibiting a corrosion rate of 0.5 mm·year-1. Observed oxide and carbon contamination have a high impact on controlled degradation, suggesting that surface treatment of thin foils is necessary. The bioactivity test showed positive results; more detailed tests in this area are of interest.}, language = {en} } @article{LotterBrebantEigenbergeretal., author = {Lotter, Luisa and Brebant, Vanessa and Eigenberger, Andreas and Hartmann, Robin and Mueller, Karolina and Baringer, Magnus and Prantl, Lukas and Schiltz, Daniel}, title = {"Topographic Shift": a new digital approach to evaluating topographic changes of the female breast}, series = {Archives of Gynecology and Obstetrics}, volume = {303}, journal = {Archives of Gynecology and Obstetrics}, number = {2}, publisher = {Springer Nature}, doi = {10.1007/s00404-020-05837-3}, pages = {515 -- 520}, abstract = {Purpose To assess precise topographic changes of the breast, objective documentation and evaluation of pre- and postoperative results are crucial. New technologies for mapping the body using digital, three-dimensional surface measurements have offered novel ways to numerically assess the female breast. Due to the lack of clear demarcation points of the breast contour, the selection of landmarks on the breast is highly dependent on the examiner, and, therefore, is prone to error when conducting before-after comparisons of the same breast. This study describes an alternative to volumetric measurements, focusing on topographic changes of the female breast, based on three-dimensional scans. Method The study was designed as an interventional prospective study of 10 female volunteers who had planned on having aesthetic breast augmentation with anatomical, textured implants. Three dimensional scans of the breasts were performed intraoperatively, first without and then with breast implants. The topographic change was determined as the mean distance between two three-dimensional layers before and after augmentation. This mean distance is defined as the Topographic Shift. Results The mean implant volume was 283 cc (SD = 68.6 cc, range = 210-395 cc). The mean Topographic Shift was 7.4 mm (SD = 1.9 mm, range = 4.8-10.7 mm). The mean Topographic Shifts per quadrant were: I: 8.0 mm (SD = 3.3 mm); II: 9.2 mm (SD = 3.1 mm); III: 6.9 mm (SD = 3.5 mm); IV: 1.9 mm (SD = 4.3 mm). Conclusion The Topographic Shift, describing the mean distance between two three-dimensional layers (for example before and after a volume changing therapy), is a new approach that can be used for assessing topographic changes of a body area. It was found that anatomical, textured breast implants cause a topographic change, particularly on the upper breast, in quadrant II, the decollete.}, language = {en} }